
Verifying Android Applications using Java PathFinder

Heila van der Merwe, Brink van der Merwe and Willem Visser
Dept. of Computer Science
University of Stellenbosch
Private Bag X1 Matieland

South Africa, 7602
{hvdmerwe, abvdm, wvisser}@cs.sun.ac.za

ABSTRACT
Mobile application testing is a specialised and complex field.
Due to mobile applications’ event driven design and mo-
bile runtime environment, there currently exist only a small
number of tools to verify these applications.

This paper describes the development of JPF-Android, an
Android application verification tool. JPF-Android is built
on Java Pathfinder, a Java model checking engine. JPF-
Android provides a simplified model of the Android frame-
work on which an Android application can run. It then al-
lows the user to script input events to drive the
application flow. JPF-Android provides a way to detect
common property violations such as deadlocks and runtime
exceptions in Android applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
VERIFICATION

Keywords
Mobile Application, Java Pathfinder, JPF, Android, Auto-
matic Verification, Testing, Model Checking

1. INTRODUCTION
Software testing and verification plays an important role in
determining the quality and robustness of software. These
are two very important attributes of mobile applications,
especially since users currently have more than 600 000 ap-
plications to choose from on the Google Play Market.

Although software testing is so important, it is often ne-
glected due to it being a complex and time consuming pro-
cess. Android applications face additional challenges when
it comes to application testing. Firstly, they have an event
based design which means that their application flow is driven
by graphical user interface (GUI) and system events [11].
Secondly, Android applications are developed in a custom
implementation of the Java Application Programming Inter-
face (API) adopted from the Apache Harmony [15] project.
The compiled applications can only be executed on a spe-
cial virtual machine (VM) called the Dalvik VM that runs
on Android devices [8].

Due to these challenges, the rapid pace at which mobile ap-
plications are developed and the lack of testing tools avail-
able, mobile application testing is often omitted altogether.
The simplest way to test GUI applications is manual black-
box testing. But, this is a time consuming, error prone and
expensive process [9]. One way to reduce this high cost, is
to automate the testing of GUI – in this case Android –
applications [9].

The most common way to automate Android application
testing is to run tests on the Dalvik VM on a physical de-
vice/emulator. Testing frameworks such as the MonkeyRun-
ner [7] and Robotium [6] make use of Android’s built-in JU-
nit framework [7] to run test suites on the device. Run-
ning tests on the Dalvik VM is slow as they have to be
instrumented and each test sequence has to be defined and
executed sequentially. Other projects use alternative ways
to automatically generate input by manipulating the built
in accessibility technologies [9], by re-implementing the An-
droid keyboard [13] or by instrumenting the Dalvik VM to
generate logs that are analysed to detect common errors [12].
Mockito [4] and Android Mock [3] allow JUnit testing on the
Dalvik VM by using mock Android classes. The advantage
of testing applications on the Dalvik VM is that we can phys-
ically emulate input events on the device. The disadvantage
is that it is not simple to automate this input emulation.

Another approach is to test Android applications using the
Java Virtual Machine (JVM). There are different ways of im-
plementing such a framework. Android Lint, for example,
makes use of static analysis to identify common errors in ap-
plications. Robolectric [5], a JUnit testing framework run-
ning on the JVM, intercepts the loading of Android classes
and then uses shadow classes that model these classes.

Although Android applications and Java desktop applica-
tions are designed for completely different Java VMs, they
are both built on an implementation of the Java API. As
a consequence, Android applications contain many of the
same errors as Java applications. These defects include, but
are not limited to, concurrency issues and common run-time
exceptions such as null pointer dereferencing exceptions. It
follows that existing Java testing frameworks can be adapted
to verify Android applications.

This paper describes an extension to Java Pathfinder (JPF) [2]
that enables the automatic verification of Android applica-
tions on the standard Java JVM. The next section will pro-

vide an overview of JPF and Android and how JPF can be
used to test Android applications. Thereafter, the develop-
ment of the JPF-Android tool will be discussed concluding
with two case studies.

2. DESIGN
2.1 Java Pathfinder
JPF is an automated, open source, analysis engine for Java
applications [2]. It is implemented as an explicit state model
checker that includes mechanisms to model Java classes and
native method calls (Model Java Interface - MJI Environ-
ment), track byte code execution and listen for property vi-
olations. Additionally, JPF’s design encourages developers
to create extensions to the framework. Currently there exist
many extensions including a symbolic execution extension
(JPF-SYMBC), data race detector (JPF-RACEFINDER)
and an abstract window toolkit (AWT) extension (JPF-
AWT) [14].

JPF-AWT allows the model checking of AWT applications.
AWT applications are event driven and based on a single
threaded, message queue design. All application events are
put in a message queue and then handled by the main thread
of the application, called the EventDispatchThread. JPF-
AWT introduced the idea of using a simple event script file
to write sequences of user inputs to drive the application
execution. JPF-AWT models the EventDispatchThread so
that when the message queue is empty, it requests an event
from the script file simulating the event occurring.

JPF-Android makes use of JPF’s extension mechanisms to
model the Android application framework so that Android
applications can run on the JVM. It then extends JPF-
AWT’s input model to simulate user and system input to
drive the application flow. One of the advantages of extend-
ing JPF is that it has been rigorously tested and can suc-
cessfully detect many common defects in Java applications.
When Android applications run on JPF using JPF-Android,
common software errors are automatically detected.

2.2 Android
Android is an open source software stack for devices with
an advanced RISC Machine (ARM) architecture. It con-
sists of the Android operating system (OS), the application
framework and an application development toolkit assisting
developers to create applications for the platform [1].

As shown in Figure 1, the Android OS is built on top of
a modified Linux kernel. The kernel provides a layer of ab-
straction on top of its low level functionality such as process,
memory, user, network and thread management. On top of
the Android kernel is a set of native C-libraries. The Dalvik
VM is a custom, optimised version of the JVM. For security
reasons each Android application is run as a separate process
in its own Dalvik VM instance [17]. Hence, applications can
only communicate with each other and with the Android
framework using Android’s Binder inter-process communi-
cation (IPC) mechanism [16].

Android has one main application called the system pro-
cess. The system process contains services responsible for
performing the main tasks of the system, including:

Stock Android Apps
Launcher Phone Alarm
Email Settings Camera
Gallery Calendar ...

Custom/Market Apps

B
in
d
er

System Server
Activity Manager Window Manager
Package Manager Location Manager

Power Manager Battery Service
Notification Manager Mount Service

Clipboard Service ...

android.* java.*
(Apache Harmony)

Android Runtime/Dalvik/Zygote

Libs Init/ToolboxNative
Daemons

Hardware
Drivers

Linux Kernel
Binder, ashmem, wakelocks,lowmem, ...

Figure 1: The Android application stack [19]

ActivityManager manages the life-cycle and interaction
of all the activities running on the system

WindowManager allows applications to draw on the screen
and forwards UI input to the application.

PackageManager stores information on the application
packages installed on the device

All Android applications follow a single-threaded design in
which the main thread of the application handles all appli-
cation events [1]. This structure is commonly used by many
UI frameworks since it becomes too complex to make all
UI classes thread safe [10]. In Android, this main thread is
called the Looper thread. The Looper has a message queue
attached to it containing all application events to be dis-
patched. UI and system events are scheduled on the Looper

by adding them to the message queue. The Looper is re-
sponsible for continuously looping through these messages
and handling them appropriately. This could include up-
dating a widget, loading a new activity or processing an
Intent (see below).

The main entry-point of each Android application is in its
ActivityThread class. The ActivityThread class is part of
the Android framework and starts the application’s Looper

thread. It also keeps track of the application’s components
and handles user and system events. Android applications
also consists of the following application components:

Activity responsible for representing and managing an user
interface. An application can consist of many Activi-
ties.

Service performs background operations such as the pulling
of messages from a server every 5 minutes. Services do
not have user interfaces and an application can have
zero or more services running simultaneously.

Broadcast receiver listens for and responds to system-
wide events such as network failing, low battery or
screen orientation change events.

Content provider manages application data stored on the
file system, in databases, on the web or other storage
medium and provides a gateway to this data from other
applications.

These components interact with each other and with other
applications using a structure called an Intent. An Intent

is a high level implementation of the Binder IPC. Intents
are used to start Activities and Services or to provide a
notification of certain events. They are similar to messages
containing a description of an operation to be performed or,
often in the case of broadcasts, a description of something
that has happened and is being announced [1].

2.3 Scope of JPF-Android
The objective of JPF-Android is to verify Android appli-
cations by running the application code on the JVM using
a collection of different event sequences and then to detect
when certain errors occur using JPF.

The Android framework is very large and one of the main
challenges of JPF-Android is to decide which parts of the
system to model. The more of the Android framework is
modelled, the more realistic the model is and the more errors
can be found. However, if too much of the framework is
modelled the scheduling possibilities increase exponentially
which means that the search space can become too big to
verify.

JPF-Android focuses on verifying a single application with
multiple application components and their interaction. The
system service of the Android OS is not part of the applica-
tion process and runs in its own thread. To reduce schedul-
ing possibilities, the entire system service is not modelled
but its necessary components are implemented as part of
the application process. The following parts of the Android
framework is modelled:

ActivityManager manages the life-cycle of Activities and
other application components.

ActivityThread the main entry-point to the application.
It controls and manages the application components
and their input.

Application components including Activity, Service,
Broadcast Receiver and Content Provider.

Window and View structure The view hierarchy is mod-
elled including the widgets and the window classes.

Message queue modelled to support script input.

Lastly, as the application will not be communicating with
outside processes, the Intent objects are modelled to ex-
clude the Binder IPC service.

3. DEVELOPMENT
3.1 JPF-Android architecture
As discussed above, both Android and AWT applications
have a single-threaded application design and therefore JPF-
Android is based on JPF-AWT’s architecture.
JPF-Android models Android’s message queue by using JPF’s
MJI environment. When the Looper thread requests a new
message from the message queue and it is empty, a call to the
native JPF_MessageQueue class requests the next event from
the scripting environment. The JPF_MessageQueue class
classifies events as either UI or system events. UI events are

1. @intent1.setComponent(“SampleActivity”)

2. startActivity(@intent1)

3. $button1.onClick()

Figure 2: Starting SampleActivity

directed to and handled by the native JPF_Window class and
system events by the native JPF_ActivityManager class.

UI events include events fired by widgets such as clicking a
button or selecting an item in a list view. An Activity’s UI is
represented by a window object containing a view hierarchy.
When the window is inflated, an object map is created in the
native JPF_Window class. This map binds the name of each
widget to the reference of the inflated widget object. When
an UI event is received by the native JPF_Window class, the
name of the target widget is looked-up in the object map
and the action is then called directly on the inflated widget
object by pushing a direct call frame on the JPF call stack.

System events use Intent objects to describe a event that
occurred. They include events to start an Activity or Ser-
vice or a battery low notification. In the Android OS, system
events are sent to the Activity manager which is modelled
in JPF-Android by the native JPF_ActivityManager class.
This class keeps a map of Intents as they are defined in
the script file. When a system event is received, the corre-
sponding Intent is looked up in the map. The Intent is
then resolved to the relevant component and scheduled in
the application’s message queue.

3.2 The scripting environment
JPF-AWT’s script consist of a list of UI events. These events
are read one-by-one when the message queue it empty. To
allow users to script system events, variables were added
to the scripting language in JPF-Android. Variable names
are identified by the “@” in front of the variable’s name as
’$’ is already used in JPF-AWT to identify UI components.
These variable can be used to construct most Intent objects.
For example, a script file that sends an Intent to start the
SampleActivity is shown in Figure 2

JPF-Android scripts also adopted the REPEAT and ANY
constructs from JPF-AWT. REPEAT constructs repeat a
list of events a specified number of times. ANY constructs
take a list of non-deterministic events as parameters and
then uses a ChoiceGenerator and JPF’s state matching and
backtracking features to visit each of the execution branches.
JPF stores the state of the system before it advances to a
new state. JPF-AWT uses a JPF search listener to store and
retrieve the current position of the input script in a specific
state so that the script’s state is also saved.

Android applications contain multiple windows - one for
each Activity. This complicates the script input as each
window has its own unique set of view components, hence,
a unique input sequence. Furthermore, the application flow
can switch between these Activities at any point of execu-
tion. In other words, if we do not know which Activity has
the focus (or is in it’s resumed state), we cannot script the
following events.

1. @startIntent.setComponent(“ListContactsActivity”)

2. startActivity(@startIntent)

3. $createContactButton.onClick()

4. $nameEdit.setText(“Mary”)

5. ANY { $<create | clear>Button.onClick()}
6. $nameEdit.setText(“Maria”)

Figure 3: Original script for Contacts application

1. SECTION default {
2. @startIntent.setComponent(“ListContactsActivity”)

3. startActivity(@startIntent)

4. }
5.

6. SECTION ListContactsActivity {
7. $createButton.onClick()

8. $list.setSelectedIndex([0-3])

9. }
10.

11. SECTION NewContactActivity {
12. $nameEdit.setText(“Mary”)

13. ANY { $<create | clear>Button.onClick()}
14. $nameEdit.setText(“Maria”)

15. }

Figure 4: Adding sections to the input script

Let us take a Contacts Android application as an example.
The application has two Activities: the ListContactsAc-

tivity and the NewContactActivity. The ListContacts-

Activity contains a list of the stored contacts and a button
to add a new contact that directs the user to the NewContac-
tActivity. The NewContactActivity contains two buttons:
the clear button stays on the current Activity and clears its
fields and the create button starts the ListContactsActiv-

ity. Figure 3 contains theNewContactActivity’s events.

The problem occurs in the ANY structure. When the cre-
ate button is clicked the application changes to the List-

ContactsActivity and the following event is not valid any
more. This drastically restricts the number of sequences
that can be scripted in the file. To address this issue, we in-
cluded the use of sections in the input script (see Figure 4).
Each section groups the input events of a specific Activity.
Now, if the create button is pressed, the ListContactsAc-

tivity will be started and the events specified in its section
will start executing again.

The addition of the sections in the input script lead to in-
finite event sequences. In the above example, an infinite
loop occurs when the create button is pressed on the New-

ContactActivity window. This will stop execution of the
NewContactActivity section and restart the ListContact-

sActivity section’s events. When the ListContactsActiv-

ity’s section is restarted, it again clicks on the create but-
ton restarting the NewContactActivity. To address this is-
sue, JPF-Android keeps record of its current Activity. The
scripting environment was also adapted to store the current
position in each visited Activity’s section. If a branch re-
turns to a previously visited Activity, its current position in
its section is looked up and instead of restarting the section,
it continues from its previous position.

1. SECTION SimpleActivity {
2. ANY { $button[0-9].onClick() }
3. ANY { $button<Plus|Minus|Mul|Div|More>.onClick() }
4. ANY { $button[0-9].onClick() }
5. $buttonEquals.onClick()

6. }
7.

8. SECTION ScientificActivity {
9. ANY { $button<Sin|Cos|Tan>.onClick() }
10. }

Figure 5: Input script for Calculator application

3.3 Case studies
The first application is a scientific calculator. The calculator
has two Activities: a simple view that displays basic arith-
metic operations and a scientific view that displays more
complex arithmetic operations. When the user switches be-
tween these Activities, the current state of the calculator is
preserved. This state includes the intermediate values and
current operation. This state information is bundled with
the Intent that starts the next Activity.

The calculator application contains two errors. When the
user divides a value by zero, an uncaught ArithmeticEx-

ception is thrown by the application which causes Android
to kill the application. Secondly, the application neglected
to attach the state information to the Intent that is passed
to the next Activity. When the user switches to the other
Activity a NullPointerException is thrown when it tries to
read the state information from the Intent. To detect these
errors we will use the test script in Figure 5. The scripting
environment interprets the script into the following input
sequences:

<sequence> = <simple seq> |<complex seq>

<simple seq> = number, simple op, number, equals

<complex seq> = number, complex op

simple op = “+”|“-”|“× ”|“÷ ”

complex op = “sin”|“cos”|“tan”

equals = “=”

number = “0”|“1”|“2”|“3”|“4”|“5”|“6”|“7”|“8”|“9”

Each of the ten number buttons are pressed followed by a
simple operation and another number or a complex opera-
tion. Although it is possible to input numbers consisting of
multiple digits including floating point numbers, for illus-
tration purposes this was left out of the input script. JPF
is automatically configured to detect thrown exceptions and
to stop execution. When JPF-Android was run on the ap-
plication it firstly detected the ArithmenticException due
to the division by zero:

== results

error #1: gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty

"java.lang.ArithmeticException: Division by zero at ..."

== statistics

elapsed time: 00:00:01

states: new=76, visited=0, backtracked=63, end=30

search: maxDepth=13, constraints hit=0

choice generators: thread=7 (signal=0, lock=3, shared ref=0), data=39

heap: new=3455, released=2105, max live=1507, gc-cycles=74

instructions: 76796

max memory: 117MB

loaded code: classes=145, methods=2064

1. SECTION DeadlockActivity {
2. $button1.onClick()

3. $button2.onClick()

4. }

Figure 6: Input script for Deadlock application

==

After this error was fixed JPF-Android detected the Null-

PointerException in the same way.

Both of these errors would have been difficult to detect with
unit testing. The ArithmenticException is challenging due
to the many possible input sequence combinations. If a test
case did not specifically identify this as a point of interest,
unit testing would not have detected this error. The second
error is challenging to detect due to the fact that it only
occurs when the flow of Activity classes are tested.

The next case study is a very simple application demon-
strating how JPF-Android detects a deadlock in a Android
application. When the Looper thread of an application is
caught in a deadlock, the Android OS kills the application
and displays an Application Not Responding (ANR) dialog.
However, Android does not detect a deadlock if it occurs be-
tween other asynchronous threads. This sample application
spawns two asynchronous threads that deadlock. The appli-
cation has one Activity with two buttons. The first button
spawns the first thread and the second button spawns the
second thread. After a while these two thread deadlock and
are then blocked forever, waiting for each other. The input
script for the application is given in Figure 6. JPF is then
configured to listen for deadlocks and schedules the threads
in all possible ways to detect the deadlock.

== thread ops #1

1 1 trans loc : stmt

------- ------- ---

B:1003 | 54 DeadlockActivity.java:82 : bower.bowBack(this);

| B:1000 54 DeadlockActivity.java:82 : bower.bowBack(this);

L:1000 | 54 DeadlockActivity.java:56 : friend[0].bow(friend[1]);

| L:1003 18 DeadlockActivity.java:56 : friend[0].bow(friend[1]);

S | 6

| S 3

== results

error #1: gov.nasa.jpf.jvm.NotDeadlockedProperty

"deadlock encountered: thread java.lang.Thread:{i..."

== statistics

elapsed time: 00:00:01

states: new=55, visited=13, backtracked=67, end=1

search: maxDepth=10, constraints hit=0

choice generators: thread=26 (signal=0, lock=11, shared ref=0), data=7

heap: new=1430, released=375, max live=1040, gc-cycles=67

instructions: 12661

max memory: 117MB

loaded code: classes=140, methods=1792

==

4. FUTURE WORK
Currently JPF-Android can detect deadlocks, race condi-
tions and other property violations in Android applications.
The next challenge is modelling the extra Android libraries.
This is because most Android applications make use of many
Android specific libraries such as the sqlite database connec-
tor, HTTP connections or the media player libraries.

Another extension that will be added to JPF-Android is
coverage testing. JPF has many coverage extensions avail-

able so we will be adapting one these extensions to work
on Android applications [18]. Coverage testing is especially
important to find errors related to the Android Activity life
cycle such as the null pointer exception mentioned above.

5. CONCLUSION
The paper discussed the design and implementation of JPF-
Android. JPF-Android is still under development and cur-
rently only models the core libraries needed to verify a basic
Android application. It allows Android applications to be
tested using JPF’s proven verification techniques and can
successfully detect common Java errors such as runtime ex-
ceptions and deadlocks.

This extension provides a basis on which Android appli-
cations can be tested. It can later be extended to verify
functional requirements and identify Android specific errors
using JPF’s listener mechanism.

6. REFERENCES
[1] Android documentation. http://developer.android.com/.

Accessed: 17 July 2012.

[2] Java Pathfinder documentation.
http://babelfish.arc.nasa.gov/trac/jpf. Accessed: July 2012.

[3] Android mock, November 2007.
http://code.google.com/p/android-mock/. Accessed: 17 July
2012.

[4] Mockito, November 2007. http://code.google.com/p/mockito/.
Accessed: 17 July 2012.

[5] Robolectric documentation, November 2007.
http://pivotal.github.com/robolectric. Accessed: July 2012.

[6] User scenario testing for android, November 2007.
code.google.com/p/robotium/. Accessed: 17 July 2012.

[7] Testing fundamentals, June 2012. http://developer.android
.com/tools/testing/. Accessed: 17 July 2012.

[8] D. Ehringer. The Dalvik virtual machine architecture. 2010.

[9] M. Grechanik, Q. Xie, and C. Fu. Creating gui testing tools
using accessibility technologies. In International Conference
on Software Testing, Verification and Validation Workshops
(ICSTW), pages 243 –250, April 2009.

[10] G. Hamilton. Multithreaded toolkits: A failed dream?, October
2004. http://weblogs.java.net/blog/kgh/archive/2004
/10/multithreaded_t.html. Accessed: 17 July 2012.

[11] C. Hu and I. Neamtiu. Automating gui testing for android
applications. In Proceedings of the 6th International
Workshop on Automation of Software Test, AST ’11, pages
77–83, New York, NY, USA, 2011. ACM.

[12] C. Hu and I. Neamtiu. Automating gui testing for android
applications. In Proceedings of the 6th International
Workshop on Automation of Software Test, AST ’11, pages
77–83, New York, NY, USA, 2011. ACM.

[13] H. Ji. Mobile software testing based on simulation keyboard. In
Q. Luo, editor, Advances in Wireless Networks and
Information Systems, volume 72 of Lecture Notes in Electrical
Engineering, pages 555–561. Springer Berlin Heidelberg, 2010.

[14] P. Mehlitz, O. Tkachuk, and M. Ujma. JPF-AWT: Model
checking gui applications. In 2011 26th IEEE/ACM
International Conference on Automated Software Engineering
(ASE), pages 584 –587, November 2011.

[15] E. Pasko. Google android, apache harmony and java packaging,
2007. http://apache-harmony.blogspot.com/2007/11/google
-android-apache-harmony-and-java.html. Accessed: July 2012.

[16] T. Schreiber, J. Somorovsky, and D. Bußmeyer. Android
Binder. [seminarthesis], October 2011.

[17] J. Six. Application Security for the Android Platform.
O’Reilly Media, Inc., December 2011.

[18] M. Staats. Towards a framework for generating tests to satisfy
complex code coverage in Java Pathfinder. In Proc. of NASA
Formal Methods Symposium 2009, page 116, 2009.

[19] K. Yaghmour. Understanding the Android System Server. In
AnDevCon, Android conference, 2011.

