
StateComparator: Detecting Unbounded Variables Using JPF

Heila Botha
Dept. of Computer Science
University of Stellenbosch,

South Africa
CAIR, Meraka, CSIR
hvdmerwe@cs.sun.ac.za

Brink van der Merwe and
Willem Visser

Dept. of Computer Science
University of Stellenbosch,

South Africa
{abvdm, wvisser}@cs.sun.ac.za

Oksana Tkachuk
SGT Inc. / NASA Ames

Research Center
Moffett Field, California
oksana.tkachuk@nasa.gov

ABSTRACT
Model checking software applications can result in exploring large
or infinite state spaces. It is thus essential to identify and abstract
variables that could potentially take on a large number of values,
in order to increase state matching. In this paper we describe a
tool we created as an extension to Java PathFinder, called State-
Comparator, which compares states in the state space to identify
variables that should be abstracted.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Test-
ing tools

Keywords
Model Checking, State Matching, Java PathFinder, Abstraction

1. INTRODUCTION
Model checking is used to explore finite-state systems and find
property violations or prove their absence [2]. Software model
checkers such as Java PathFinder (JPF) [7] apply model checking
to programs written in modern languages with a large number of
potentially complex states. Software applications are not inher-
ently finite-state, which leads to non-termination during model
checking.

To model check programs, the state space of the application and
its environment must be abstracted to a finite-state system. Of-
ten in-depth knowledge of a software system is required to identify
and abstract the variables causing the state space explosion. Ab-
stracting a System-Under-Test (SUT) to form a finite-state sys-
tem has been studied before, but software tools developed for this
purpose typically require the user to manually identify fields to
be abstracted [3, 5]. Bounded model checking can also be used
to ensure a finite-state system by limiting the search depth in the
state space, but this approach limits the exploration to a small
subset of the system’s actual behavior.

In this work we focus on identifying variables causing a state space
explosion in JPF. Abstracting these variables decreases the size of
the state space which allows the model checker to explore more of
the system’s behavior. In this paper we describe our solution to
identifying such variables by detecting the changes in subsequent
states of an SUT. We implement the solution as a JPF listener
and show four examples where the tool identifies these variables.

2. BACKGROUND
JPF is an open-source analysis engine for Java applications [7].
It is implemented as an explicit state model checker designed to
verify Java applications on a custom JVM implemented in Java.
JPF explores the state space of the SUT represented by a directed

graph consisting of states and transitions. The state of an SUT
in JPF consists of three main components [4]:

Thread list Stores a list of the threads and their current states.
The state includes a thread’s unique id and stack trace. The stack
trace contains a list of stack frames — one for each method call
storing the location in the method (program counter), its local
variables and operands.

Static area Stores a list of all loaded classes and the values of
their static variables.

Dynamic area Stores a list of all reference (dynamic) objects in
the heap. Each entry contains the type of the object, its unique
reference id and a map of its fields and/or list items and their
values. Reference ids represent memory locations in the heap and
are stored as int values.

Static variables, local variables and object fields in the state can
either have primitive values or store a reference id of another
object-entry in the dynamic area.

A transition in JPF consist of the list of instructions leading from
one state to another. Each path in the state-transition graph rep-
resents a possible execution of the application. JPF executes the
system deterministically until multiple non-deterministic branches
of the execution are possible due to thread interleavings (thread
choices) or by different environment configurations (data choices).
At a choice point, the transition is ended and the current state of
the system is stored. Choices are explored non-deterministically
in different branches originating from the state which is restored
for each branch using backtracking. JPF stops exploring a path
when it reaches an end state (termination of the program) or a
previously visited state (in which case the following execution has
already been explored).

Explicit state model checkers create states on-the-fly. When a
new state is stored in JPF, the current list of threads, classes and
the objects in the heap are serialized into a hash value used for
quick state matching. To obtain heap symmetry, object entries
are stored in the order in which they are referenced and not by
their ids. To increase state matching, garbage collection is run
before a state is stored to filter out unreferenced objects.

JPF is designed to separate the process of state matching and
state storage for backtracking. The serialization of the state into
a hash value is only used for state matching. In order to restore
the state of the system, JPF stores a memento of the kernel state
(thread list, heap, classloaders and listeners) from which the state
is restored.



JPF includes an option for state debugging. When enabled, a
serialized version of each state is stored in a file. These files can
be compared by using a diff tool in order to identify changes in
the state.

3. MOTIVATING EXAMPLE
Listing 1 shows a driver for a binary tree implementation we ana-
lyze using JPF. The driver adds an integer to the tree and then
removes the integer again and asserts that the tree is empty. This
code is placed in a while-loop and the transition is ended and a
state stored for each iteration, in order to check for state match-
ing. We expect the application to match states after the second
iteration of the loop. At this point the binary tree contains no
elements — the same state it was in after the first iteration.

1 public static void main(String[] args) {
2 BTree<Integer> bt = new BTree<Integer>();
3 while (true) {
4 bt.push(5);
5 bt.remove(5);
6 assert bt.size == 0;
7 Verify.breakTransition();
8 }
9 }

Listing 1: Binary Tree example

When we run this example on JPF, however, it does not termin-
ate. This indicates that the state changed for each iteration of
the loop. On further investigation and manual state comparison
we found that the reason for this is the unbound modCount field
in the BTree class. This field is a modification counter used to
catch modifications to the tree while iterating over its nodes using
an Iterator. The modification counter is increased each time
an integer is added or removed from the tree. If we remove mod-
Count from the state using JPF’s @FilterField annotation,
the system executes as expected and the state matches after the
second iteration of the loop. We should note that modCount is
used so often in data structures in Java (Lists or Maps) that JPF
automatically filters the field from the state for the java.util
package.

4. DESIGN
Our goal is to identify variables that cause the SUT to have too
many states for the model checker to explore. Removing these
variables from the state, or abstracting and bounding their values
can reduce path lengths and the size of the state space to a more
tractable size. Our solution to detect these variables is to track
how the state changes along a path in the state-transition graph.
These variables’ values will continuously change causing states
that would normally match to differ.

We implemented our solution as a JPF extension called State-
Comparator. It consists of a JPF listener, detecting which states
to compare, and a state serializer that caches the state in a
StateInfo object. StateInfo objects are then compared to
detect the changes between two states.

4.1 Identifying states
Applications have many states created at different locations in the
code and on different paths. These states can only match when the
application is in the same location in the code, the threads are in
the same state and the state of the heap and loaded classes match.
If we compare all states, too many changes can be reported. The
user will thus not be able to identify which variables are causing

the state explosion. To highlight changing variables, we limit the
comparison to states stored at the same location in the code and
on the same path in the state-transition graph. Changes detected
for these states show the side effects causing states to mismatch
at this location.

To mark states for comparison, the user inserts a markState
statement into the source code:

StateComparator.markState(String tagName, int
startAfter, int stopAfter );

The tag name distinguishes between different locations to com-
pare. In this paper we only use a single location (mark-statement)
in our examples. To reduce the reported changes and to ensure
the analysis terminates the user can also specify the number of
marked states after which to start recoding states and the number
of marked states after which to stop the analysis.

Each time this statement is executed, the current transition is
ended and a new state is stored and marked. The listener seri-
alizes the marked state into a StateInfo object using the state
serializer and caches it until the next marked state is reached. At
this point the two states are compared, the changes recorded and
the new state cached — replacing the previous state that is no
longer needed. To enable the tool to run on a state space with
multiple paths, we store and restore (backtrack) the currently
cached state.

4.2 Serializing states
Our state serializer is based on JPF’s DebugCFSerializer. It
creates a StateInfo object that caches all variable values of a
state. We create the StateInfo objects during the JPF seri-
alization phase when the entire state is traversed for calculating
the hash value of a state for state matching. In this way we save
execution time by reusing the traversal of the system state. The
StateInfo object could also be created when a state is restored
by the backtracker. This reduces the number of StateInfo ob-
jects in memory stored for backtracking, but it increases execution
time since the entire state space needs to be traversed again after
each marked state is restored (which is currently only done when
the state is saved.) Because the user can specify the number
of marked states to record and when to start recording, only a
few marked states need to be stored to detect changing variables.
Therefore the tool does not at this point greatly influence the
performance of JPF.

The StateInfo object keeps separate maps to cache classes,
stack frames and heap objects. The StateInfo object stores the
unique id and all variable names mapped to their values for classes
and heap objects. For stack frames it stores the local variables,
the thread id and depth of the stack frame in order to uniquely
identify each variable across states. Each variable can either have
a primitive value stored in its primitive form (int, boolean, float,
char etc.) or store a reference id pointing to another object in
the heap. Reference ids are stored as Strings starting with an
’@’ character to distinguish between them and normal integers or
Strings.

4.3 Comparing states
Two states are equal when all their variables (local, static and
dynamic) match. Since marked states should match, we are in-
terested in the changes in the state’s variables.



Variables with primitive values are compared using a normal Java
equals operator. Variables with reference values, however, are
more complex. They can be equal even when references differ or
unequal when the references are the same. It all depends on the
underlying objects to which the references are pointing. To ensure
that two objects are truly equal, their fields must be compared
recursively otherwise changes may be missed or false changes de-
tected between two objects. This graph of object references can
contain cycles when objects reference each other. To avoid cycles
during analysis, reference objects are marked as visited when com-
pared and skipped when reached again. The algorithm we use to
recursively compare two variables is given in Listing 2. It finds
all changes in the object graph. Variable changes are recorded
together with the path of objects from the root object to the
changed object.

Corresponding local variables can be matched across states using
the unique id of its stack frame, the thread id to which the stack
frame belongs and the name of the variable. Static variables can
also be compared directly using their class’s id and the name of
the variable, since there can only exist one instance of a class per
state.

Matching corresponding dynamic objects in the heap, however, is
not directly possible. A simple example of this is the immutable
Integer wrapper class in Java that cannot be modified. Each
time the variable is changed a new Integer object with a differ-
ent reference id is placed on the heap. Although the reference ids
differ, it might be the same variable in the program. To match
dynamic objects we make use of the same solution implemented
by the mark-and-sweep algorithm used by garbage collection to
identify all referenced objects in the heap. Instead of comparing
dynamic variables directly we recursively compare all roots of the
objects graphs i.e. the local and static variables. By compar-
ing these variables, we will compare all dynamic variables in the
heap. The compare method is called on each of the roots and
then recursively on each of their fields/list items.

1 boolean compareObjects(obj1, obj2)
2 // to avoid cycles
3 mark obj1
4

5 if obj1 and obj2 is null:
6 return true
7

8 if obj1 or obj2 is null:
9 return false

10

11 if obj1 is a reference id:
12 obj3 = getObject(obj1)
13 obj4 = getObject(obj2)
14

15 if obj3 not marked:
16 return compareObjects(obj3, obj4)
17

18 //already visited
19 return true
20

21 if obj1 != obj2:
22 //primitive variables do not match
23 return false

Listing 2: Algorithm used for comparing reference
objects

4.4 Interpreting and using output
StateComparator prints the ids of the compared states and for
each set of states all variable changes. It also prints the object
trace from the root object to the mismatching variable in order to

provide context to the variable. This allows the user to identify
which variables keep on changing for each state comparison. Each
marked state is printed to a file for manual inspection. If a field
causing the state space explosion does not influence the property
being checked, it can be removed from the state. Otherwise the
field must be abstracted to a finite set of values to limit the be-
havior of the system to reduce the state space.

Variables can be abstracted in several ways using JPF. For ex-
ample, they can be removed from the state using a @Filter-
Field annotation. Filtering values from the state in this way
removes the entire object hierarchy of the object from the state
used for state matching. The variable still exists within the heap
and its state backtracked by the model checker, but it has no effect
on state matching. The annotation can also take a condition for
when the annotated field should be filtered. The @FilterField
annotation can be used on static and instance fields but not on
local variables. The @FilterFrame annotation can filter method
stack frames, their program counter and their local variables from
the state. Annotations cannot always be added to libraries or
application code. To overcome this issue, they can be specified
in the IgnoreConfiguredReflectiveNames class. JPF also
provides AbstractionAdapters where fields can be abstracted
using a custom method executed when the field is updated. In this
case the user implements an adapter for each primitive variable
that needs abstraction: local, static or instance variable. When
the value of the variable is set, the adapter is fired to ensure that
its value stays within the bounds.

5. RESULTS
We evaluate StateComparator on the motivating example above,
as well as on three other examples. Applications that have un-
bounded variables cause non-termination of the model checker.
To detect these variables, the search is bounded using a search
depth or by specifying the number of marked states after which
to terminate the model checker. We also reduce all thread choices
in the application to a single random choice to reduce the detected
changes using a custom thread scheduling strategy implemented
by our tool. Lastly, a markState statement (see Section 4.1) is
added to the application at a point where the user expects state
matching to occur.

A simple example with an infinite number of states is shown in
Listing 3. It contains an infinite while-loop that continues to
increase the iTest local variable for each iteration of the loop. In
this example, the model checker does not terminate since iTest
will never have the same value and so state matching cannot occur.

1 public class SimpleExample {
2 public static void main (String[] args) {
3 int iTest = 1000;
4

5 while (true) {
6 iTest++;
7 System.out.println("iTest=" + iTest);
8 StateComparator.markState("TAG1");
9 }

10 }
11 }

Listing 3: SimpleExample application

To find the variable causing an infinite state space using our tool,
we inserted a markState statement on line 8. This statement
breaks the transition and marks the new state for comparison. We
bound the search space to depth 10 in order to limit the results.



The output of the tool is given in Listing 4. It shows the results of
comparing marked states (0, 1), (1, 2), ..., (8, 9). These compar-
isons show that iTest is incremented for each state which causes
the states to never match. We limit the iTest field to a maximum
value of 1002 by extending JPF’s AbstractionAdapter and re-
run the application. Now the loop executed twice before the model
checker terminated — the second time the marked state matched
the previous marked state and the exploration was stopped.

=== COMPARING STATE 1 TO STATE 0 ===
SimpleExample.main(...)V.iTest: (1001 ==> 1002)

=== COMPARING STATE 2 TO STATE 1 ===
SimpleExample.main(...)V.iTest: (1002 ==> 1003)

=== COMPARING STATE 9 TO STATE 8 ===
SimpleExample.main(...)V.iTest: (1009 ==> 1010)

Listing 4: Tool output for SimpleExample

Our second application is the “oldclassic” example in jpf-core, in-
spired by a concurrency defect found on a space craft control-
ler [7]. The application consists of two threads (FirstTask
and SecondTask) that interact by exchanging events. An ex-
tract from the code is shown in Listing 5. The SecondTask
starts by signaling event1 that wakes up the FirstTask wait-
ing on event1. When FirstTask is notified of event1 it signals
event2 notifying the SecondTask of event2. A task can be
signaled of a new event before performing a costly wait opera-
tion. To optimize the application, each thread caches a copy of
the event counter associated with the event on which it waits. If
the event counter is increased before it starts to wait, it skips the
waiting operation and instead processes the event.

1 class Event {
2 int count = 0;
3 public synchronized void signal_event () {
4 count++; notifyAll();
5 }
6 public synchronized void wait_for_event () {
7 try { wait(); } catch (InterruptedException e) {}
8 }}
9

10 class FirstTask extends Thread {
11 Event event1; Event event2;
12 int count = 0;
13 ...
14 @Override
15 public void run () {
16 count = event1.count; // caches counter
17 while (true) {
18 StateComparator.markState("TAG1");
19

20 // waits if no event1 has been received
21 if (count == event1.count) {
22 event1.wait_for_event();
23 }
24 count = event1.count;
25 event2.signal_event(); // updates event2.count
26 }}}
27

28 class SecondTask extends Thread {... }

Listing 5: “oldclassic” example of jpf-core

The model checker never terminates on this example so we added
a markState statement in the while-loop of the FirstTask. We
expect states to match after a few iterations of this loop since no
new behavior will be explored. The StateComparator detects four
variables changing for each state comparison: the count variables.
The changes recorded for the last two states are shown in Listing 6.

These variables can be bounded to a maximum value, in the same
way as the previous example, in order to enable state matching.

FirstTask.count: (11 ==> 12)
Object trace:
@163 object FirstTask, mFields={count=12, event1=@15e,

event2=@15f,...}
@1 frame FirstTask.run(...) locals={this=@163}

Event.count: (11 ==> 12)
Object trace:
@15f object Event mFields={count=12}
@163 object FirstTask mFields={count=12, event1=@15e, event2

=@15f,...}
@1 frame FirstTask.run(...) locals={this=@163}

SecondTask.count: (11 ==> 12)
Object trace:
@175 object SecondTask mFields={count=12, event1=@15e,

event2=@15f,...}
@1 frame SecondTask.run(...) locals={this=@175}

Event.count: (12 ==> 13)
Object trace:
@15e object Event mFields={count=13}
@1 frame oldclassic.main(...) locals={args=@bb, new_event1

=@15e, new_event2=@15f, task1=@163, task2=@175}

Listing 6: Changes detected for the last state comparison
in oldclassic example

To detect the unbounded modCount variable in the binary tree
example in Section 3, we replace line 8 with a markState state-
ment. To bound the application we set a search depth of 10 and
run the application through JPF enabling StateComparator. The
changes detected by comparing the first two states are given in
Listing 7. Here we can see that the modCount field of the bin-
ary tree object, defined as a local variable in the main method,
is incremented by two for each loop iteration (once for adding
an integer value and once for removing it). To reduce the state
space we use JPF’s @FilterField annotation to remove this
field from state matching. When run again, the application state
matches after the second iteration of the loop.

==== COMPARING STATE 1 TO STATE 0 ====
BTree.modCount: (2 ==> 4)
Object trace:
@15b object BTree mFields={elements=@15f, modCount=4, size

=0}
@1 frame BTree.main(...)V: locals:{args=@bb, bt=@15b}

=== COMPARING STATE 2 TO STATE 1 ===
BTree.modCount: (4 ==> 6)
Object trace:
@15b object BTree mFields={elements=@15f, modCount=6, size

=0}
@1 frame BTree.main(...)V: locals={args=@bb, bt=@15b}
...

Listing 7: Changes detected for BinaryTree example

The last example is a RSSReader Android application displaying
the RSS feed entries to the user. The environment of the ap-
plication is modeled in JPF-Android [6], an extension to JPF for
Android applications. JPF-Android always returns the same set
of feed items when the update button is pressed. These items are
shown in a list displaying the name and the elapsed time since an
item was posted. We expect the application to match after a few
presses of the update button, but instead the model checker does
not terminate. To identify the problem we analyze a single path
in the application and compare the application state after each
update button press using StateComparator. The changes detec-



ted for each state comparison are shown in Listing 8. We see that
the char[] representing the text in the mText field of the Text-
Field object is changing continuously. On further inspection we
found that this TextField stores the elapsed time since the feed
item was posted and thus will never be the same since the current
time changes — even in JPF. We excluded this field from the state
using a @FilterField annotation. Afterwards the application
state matched after two presses of the update button.

mList: [-,1,4,7,0,0,6,2,1,9,5,5,7,3,]
==> [-,1,4,7,0,0,6,2,1,9,6,9,1,8,]

Object trace:
@5d0a object char[] mList=[-,1,4,7,0,0,6,2,1,9,6,9,1,8,]
@5d09 object java.lang.String, mFields={value=@5d0a,...}
@5cb8 object android.widget.TextView, mFields={mText=@5d09

,...}
...

Listing 8: Results for RSSReader example

These examples show how our tool can detect state changes and
report them to the user. But, due to space limitations, we cannot
show the entire implementation for the last example highlighting
the usefulness of the tool in identifying unbounded variables in a
large system that contains thousands of variables.

6. RELATED WORK
Previous work has been done on abstracting the environment of
Java applications for analysis purposes [5, 3]. Our work focuses
only on detecting and bounding fields causing an infinite or too
large state space. These fields are hard-to-find in large systems
with thousands of variables.

VarTracker, a listener in jpf-core’s [1] gov.nasa.jpf.listener
package, counts the number of states for which fields, local vari-
ables and static variables change. Variables that often change
can indicate that they are unbounded or have too many possible
values. Although this tool can identify that iTest, the local
variable in the SimpleExample (Listing 9), is changing it cannot
distinguish when a variable changes back to previous value — not
hindering state matching. If we assign iTest = (iTest + 1)

mod 3, for example, the same changes will be detected for each
iteration if state matching does not occur.

change variable
---------------------------------------
1000 SimpleExample.iTest
1 sun.misc.Unsafe.theUnsafe
1 SimpleExample.main([Ljava/lang/String;)V.se
...

Listing 9: Results of VarTracker for SimpleExample

Changes to fields are recored for all instances of a class. If the
application contains many of the same objects, the changes will
accumulate quite fast for these fields, although they may not be
unbounded variables. Lastly, the larger the program is, the more
variables change continuously which makes it hard to distinguish
which variables should be bounded — especially when variables
depend on each other. In the case of the binary tree, for example,
the tool detects that modCount is modified, but it also detects
that size and many other variables also change (see Listing 10).

change variable
---------------------------------------
10 BTree.remove(Ljava/lang/Object;)V.ii
10 BTree.ensureCapacity(I)V.ii
10 BTree.modCount
10 BTree.size
10 BTree.remove(Ljava/lang/Object;)V.found

1 sun.misc.Unsafe.theUnsafe
...

Listing 10: Results of VarTracker for BinaryTree

7. CONCLUSION
Model checking suffers from the state space explosion problem.
This problem can be addressed by reducing the number of states
and the size of states to increase state matching. This can be
accomplished by abstracting the SUT and its environment by
bounding variables with too many possible values or by removing
variables from the state that have no influence on the property
being checked.

In this work we show how variables hindering state matching can
be detected by comparing subsequent states in a path, where the
application is expected to match. These changes highlight the
variables stopping state matching and show how these variables
change from state to state. These variables can be abstracted
using JPF’s abstraction mechanisms.

False positives can be reported by StateComparator when the
application contains variables stopping state matching as well as
variables alternating between a set of values that would normally
allow state matching. Additionally, it cannot detect indirect de-
pendencies between variables. Abstracting one of the detected
variable in this case may lead to multiple variable abstractions.

8. REFERENCES
[1] Java Pathfinder.

http://babelfish.arc.nasa.gov/hg/jpf/jpf-core.

[2] E. M. Clarke. The Birth of Model Checking, volume 5000 of
Lecture Notes in Computer Science. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[3] J. Hatcliff, M. B. Dwyer, C. S. Păsăreanu, and Robby.
Foundations of the bandera abstraction tools. In The Essence
of Computation: Complexity, Analysis, Transformation,
pages 172–203. Springer Berlin Heidelberg, 2002.

[4] F. Lerda and W. Visser. Addressing dynamic issues of
program model checking. In Proceedings of the 8th
International SPIN Workshop on Model Checking of
Software, SPIN ’01, pages 80–102, New York, NY, USA,
2001. Springer-Verlag New York, Inc.

[5] O. Tkachuk. OCSEGen: Open components and systems
environment generator. In Proceedings of the 2nd
International Workshop on State Of the Art in Java Program
analysis (SOAP), number 1, pages 2–5, 2013.

[6] H. van der Merwe, B. van der Merwe, and W. Visser.
Verifying Android applications using Java PathFinder. ACM
SIGSOFT Softw. Eng. Notes, 37(6):1, Nov. 2012.

[7] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model Checking Programs. In Automated Software
Engineering, volume 10, pages 203 – 232. IEEE Comput.
Soc, 2003.


