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ABSTRACT
Current dynamic analysis tools for Android applications do not
get good code coverage since they can only explore a subset of the
behaviors of the applications and do not have full control over the
environment in which they execute. In this work we use model
checking to systematically explore application paths while reduc-
ing the analysis size using state matching and backtracking. In
particular, we extend the Java PathFinder (JPF) model checking
environment for Android. We describe the di�culties one needs to
overcome to make this a reality as well as our current approaches
to handling these issues. We obtain signi�cantly higher coverage
using shorter event sequences on a representative sample of An-
droid apps, when compared to Dynodroid and Sapienz, the current
state-of-the-art dynamic analysis tools for Android applications.
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1 INTRODUCTION
Android applications (apps) are used for banking, shopping and
accessing/storing personal information. These apps operate in a
safety critical environment where errors/bugs can have serious
e�ects. Android apps, like all software applications contain bugs
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and errors, but they are harder to dynamically analyze because
of their dependency on the complex environment on an Android
device. This environment consists of the dependencies without
which an application cannot run and an event generator to drive
its execution.

Most dynamic analysis tools run apps directly on an Android
emulator or device [1, 17, 19–21] to avoid modeling this complex
environment. They use random/heuristic event generation strate-
gies to drive the application’s execution. In order to bound the
analysis they use heuristics such as sequence length or runtime.
Code coverage is then used to measure the e�ectiveness of the tool.
Although these tools obtain high coverage for certain apps, they
struggle to achieve su�cient coverage for applications critically
dependent on the environment state and behavior for large parts
of the application code. Additionally they only cover a subset of
the application’s behavior and can miss critical code since there
are many event combinations and environment con�gurations to
consider. More speci�cally, there are two main challenges these
tools face:

Environment Con�guration Android only exposes limited
functionality to con�gure its environment. Tools struggle to detect
the con�gurations required by an application as well as at which
point to change the con�guration to explore maximum paths in
the application. Environment con�gurations include the battery
level, network state or even the state of a remote web server or
�le-system.

EventGenerationAndroid applications require particular events
at speci�c points in the application’s execution to enable certain
application code, for example, an incoming call from an exact num-
ber. Detecting these events is hard since it might be hidden in the
application’s implementation. Apps can also require speci�c event
sequences to reach certain areas in the application code.

In this paper we report on our experiences of model checking
Android applications to increase the coverage obtained by dynamic
analysis tools using shorter, more e�cient event sequences. Model
checking allows systematic exploration of events sequences and
environment con�gurations. It reduces and bounds the analysis
using state matching and backtracking to only explore application
paths exposing new behavior of the application. Model checking
requires an environment model to enable state matching and back-
tracking. Although creating such a model requires a lot of e�ort,
it can be reused and gives us full control over the environment
con�guration, allowing us to to increase the coverage, and event
generation, to explore shorter and more e�ective paths.
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Figure 1: Overview of JPF-Android

We implement our approach as an extension to Java PathFinder
(JPF), called JPF-Android (Figure 1). JPF is a powerful and customiz-
able analysis engine and explicit state model checker. In order
to run Android applications on JPF they must run outside of the
Android emulator and provide a driver to drive the execution of
the application. JPF-Android provides an environment model (Sec-
tion 4) implementing the functionality required by all applications
to run. This model is based on an abstracted version of the actual
application framework and allows full control over environment
con�guration. The environment model also includes generated
application speci�c models returning default/runtime/statically col-
lected values to improve coverage. JPF-Android provides an event
generator (Section 5) to detect enabled entry-points and generate
events to drive the execution of the application. Lastly JPF-Android
includes a set of listeners to record the coverage, event sequences
and environment con�gurations explored during the analysis (Sec-
tion 6). To evaluate the e�ectiveness and e�ciency of our approach
we run the tool on a set of representative apps and show a signi�-
cant increase in the code coverage using shorter event sequences
in comparison to Dynodroid [17] and Sapienz [20], the current
state-of-the-art dynamic analysis tools (Section 7).

The contributions of this work include:
• Identi�cation of the challenges of model checking Android

applications,
• Implementation of solutions in JPF-Android,
• Evaluation of the e�ectiveness of these techniques and a

comparison to state-of-the-art dynamic analysis tools.

2 BACKGROUND
2.1 Android Applications
An Android application consist of a collection of loosely coupled
components. It runs on top of the extensive Android application
framework, on its own Java virtual machine, in its own process. The
framework provides the basic implementation of an application. It
also exposes high level interfaces enabling components to interact
with each other and providing access to services and libraries. The
framework provides four main components that can be overwritten
to implement a basic application. An Activity is used to control a
Graphical User Interface (GUI), a Service performs background tasks,
a Broadcast Receiver (BR) is used to subscribe to speci�c events and
lastly Content Providers (CP) manage data access. Each application

component follows a speci�c life-cycle. The life-cycle de�nes the
states of a component and the callbacks the framework uses to
transition the component between states. The application is driven
by the framework in response to events. Events can be triggered by
the user, called User Events, and by other applications or services
generating System Events. Android application components are
not thread safe. The events sent to an application are serialized by
putting them into a message queue and processing them one-by-one
by the main application thread.

Running Android applications outside of the emulator has many
challenges. Native libraries and services are not available, the �le-
system structure di�ers and external services are not available. This
has the e�ect that the XML pull parsers in the framework are bro-
ken (used for GUI in�ation, resource parsing, preferences) since
they are implemented natively to parse compiled XML resources.
Inter Process Communication (IPC) and Inter Component Com-
munication (ICC) is also broken. This is implemented as a native
Binder kernel library with hooks in the application framework to
serialize communication. Local services such as SQLiteDB and the
camera are also non-functional since their native drivers are not
available. External operating system services responsible for ap-
plication package parsing, component life-cycle management and
window and input management are unavailable. These services run
in the their own process, have complex implementations to support
concurrent application requests and are dependent on each other
and on native code.

2.2 Model Checking Using JPF
Java PathFinder (JPF) is an open source, analysis engine for Java ap-
plications [25]. It is implemented as an explicit state model checker
designed to verify Java applications at byte-code level. Explicit
state model checking reduces the search space by generating appli-
cation states on-the-�y, limiting the search depth and making use
of state matching and backtracking to reduce the search space of
an application.

In terms of model checking, the state of a Java application con-
sists of the state of the heap, threads and stack [12]. This includes
the dynamic objects and their �elds, loaded classes and their static
variables, threads and their method traces and local variables. Java
applications are not �nite state by design. They depend on a (possi-
bly) in�nite environment. We can create a �nite state system by
abstracting environment behavior (and sometimes the application
itself) or by limiting the search depth when the application is not
�nite state. JPF allows classes to be abstracted using models to re-
place any Java class in the application, its libraries and even classes
in the Java class library.

The application is executed serially using JPF until a choice point
is reached in the execution where there are multiple paths forward.
At this point JPF breaks the current transition of instructions, stores
the application state and encodes the di�erent choices in a Choice
Generator (CG). It then systematically explores the di�erent choices
of the CG non-deterministically by branching the execution at this
point and exploring each path in turn.

This state space, explored by JPF during analysis, is reduced by
employing state matching and backtracking. When a new state is
reached, it is compared to all the previously recorded states. If it
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1 public class AutoAnswerReceiver extends BroadcastReceiver {
2 @Override
3 public void onReceive(Context context, Intent i) {
4 // Load preferences
5 SharedPreferences sp = PreferenceManager.getDefaultSharedPreferences(

context);
6
7 // Check phone state
8 String phone_state = i.getStringExtra(TelephonyManager.EXTRA_STATE);
9 String number = i.getStringExtra(TelephonyManager.

EXTRA_INCOMING_NUMBER);
10 if (phone_state.equals(TelephonyManager.EXTRA_STATE_RINGING)
11 && sp.getBoolean("enabled", false)) {
12 // Check for contact restrictions
13 String which_contacts = sp.getString("which_contacts", "all");
14 if (!which_contacts.equals("all")) {
15 int is_starred = isStarred(context, number);
16 if (which_contacts.equals("contacts") && is_starred < 0) {
17 return;
18 } else if (which_contacts.equals("starred") && is_starred < 1) {
19 return;
20 }
21 }
22 // Call a service, since this could take a few seconds
23 context.startService(new Intent(context, AutoAnswerIntentService.

class));
24 }}}

Listing 1: Code extract from AutoAnswerReceiver

matches, the rest of the path has already been explored or will be
explored later (depending on the search algorithm). In either case,
the search is stopped for this path and backtracked to a previous
choice point in the state-transition graph. Backtracking enables
JPF to continue from a previous choice point without having to re-
execute the path leading to the state since the state can be restored.

In this context, explicit state model checking of Java applications
provides a feasible way to verify that the application code, exe-
cuted by a driver, in a speci�c environment, is free from property
violations to a certain search depth.

3 MOTIVATING EXAMPLE
In this section we discuss the challenges of dynamically analyzing
Android applications using an app from the play store: AutoAn-
swer 1. AutoAnswer automatically answers incoming calls in cer-
tain con�gured scenarios. It is enabled in the app’s main preference
screen and can be con�gured to answer calls from all numbers, only
contacts or only starred contacts. Additionally, a delay can be set
before answering a call and whether calls should be answered using
the speaker or a Bluetooth headset. Lastly, the user can con�gure
it to answer a second incoming call.

To get noti�ed of incoming calls, the application registers a
BroadcastReceiver (BR) (Shown in Listing 1) for PHONE_STATE events.
If the phone state changes to STATE_RINGING and the service is en-
abled in the preferences of the application (line 11-12), the contact
restrictions are checked (line 13-21). If the call should be answered,
the AutoAnswerIntentService is started to answer the call (line
23). The two main challenges for dynamic analysis tools causing
low statement coverage for this application are: environment con-
�guration and event generation.

3.1 Environment Con�guration
Dynamic analysis tools have limited control over the environment
con�guration of the application which often leads to them missing
1https://play.google.com/store/apps/details?id=com.mathalogic.autoanswer

important behavior because a speci�c con�guration could not be
set or there are too many con�gurations to consider.

This application depends on external services/libraries including
the contacts CP that allows the application to query the list of
contacts on the phone, the Bluetooth service used to check if a
headset is connected and the audio manager used to play audio
through the speaker. Con�guring the state of these components can
be challenging. For the application to exercise its behavior related
to the Bluetooth service, for example, we need to run the application
while physically connecting and disconnecting a Bluetooth headset.
On the emulator this is not even possible since Bluetooth support
is not emulated.

Return values from dependencies in the environment also in�u-
ence AutoAnswer’s coverage. The contacts CP, for example, needs
to be setup with starred and not-starred contacts matching the
incoming call’s number before running the application to enable
lines 14-20 in Listing 1. Selecting representative return values for
dependencies is also hard. The application only responds to two
values returned from the Bluetooth service when asked for its state:
headset connect or headset not connected. If the Bluetooth service
returns any other value, it will not enable any new application
behavior.

3.2 Event Generation
Dynamic analysis tools struggle to generate event sequences for
AutoAnswer because there are many possible events and event com-
binations (especially when combined with di�erent environment
con�gurations). The events that can be �red for this app include
changing each of the settings on the preference screen as well as �r-
ing the onReceive() method of the BR with PHONE_STATE events.
Since dynamic tools cannot detect that an incoming call should
be �red for each environment con�guration, they might �re the
BR multiple times for the same con�guration and miss �ring it for
important con�gurations.

Secondly, the parameters with which entry-points are called,
have a big in�uence on the application. Although the event gener-
ator can detect that the BR is registered for PHONE_STATE events,
there are many di�erent such events: STATE_RINGING, STATE_
PHONE_OFFHOOK and STATE_PHONE_IDLE. Each of these events have
di�erent parameters. The STATE_RINGING event, for example, has
an EXTRA_INCOMING_NUMBER parameter (line 10). In this example
this parameter is very important. If the number is null, we might
run into a NullPointerException. To enable lines 14-20 in List-
ing 1, the incoming number must match a contact, a starred contact
and no contacts.

4 ENVIRONMENT MODELING
In order to model the environment of an Android application on
JPF we divide it into three components: the application framework,
external services and native libraries and drivers (Figure 2).

The application framework is the library on which an appli-
cation is built. It consists of the main application components
(Activity, Service, BR, CP), the event processing code, local services
and service managers. JPF-Android reuses the main application
components from the framework since these are extended by the
application. The event processing code is also reused from the

https://play.google.com/store/apps/details?id=com.mathalogic.autoanswer
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Figure 2: The Android application environment

framework, but additional code is added to retrieve events from
the new event producer service when the message queue is empty
(discussed in more detail in Section 5). Local services often im-
plement interfaces to native services or libraries (for example �le
management APIs, GUI in�ation from XML, SQLiteDB, networking
APIs and the camera). Depending on the usage and complexity of
the services, we either abstract their implementation using man-
ually created models (or reuse JPF’s models), or generate models
returning default/runtime values. Application components access
external services via service managers. The three most important
system services are the ActivityManager (responsible for life-cycle
management of application components), PackageManager (parses
the application package and returns information about the applica-
tion) and the WindowManager (responsible for which window is
displayed on the screen and input management). These services are
greatly abstracted using manual models that run in the application
process. Other services include TelephonyManager, LocationMan-
ager, Noti�cationManager and WiFiManager.

Models are usually created manually since this is a complex task
which requires in-depth domain knowledge [4, 13, 25]. To ease to
process, we use OCSEGen [23] to automatically generate models.
OCSEGen is used to generate complete models for a speci�c set
of classes or for generating models for classes referenced by an
application. These models’ methods return default values (false
for boolean, 0 for integer and an instance of the return object if
available). In previous work we extended OCSEGen to automate
the process of model generation for Android apps and added func-
tionality to generate models from runtime-collected values [24].
These models are especially useful for application speci�c models
and return valid values to enable more of the application code. Two
examples where generated runtime value models work well for
modeling is SharedPreferences and cursors.

SharedPreferences allow Android applications to store key-value
pairs of application settings in XML. The values of these preferences
can be changed in a menu or dialog but are most commonly up-
dated using a PreferenceActivity displaying all options to the user
and allowing them to update their preferences. Instead of allowing
the user to change these settings throughout the application at

random times, JPF-Android ignores changes to the preferences. In-
stead it uses a model returning runtime observed preference values
non-deterministically. This allows the tool to explore application
behavior systematically for all preferences.

Cursors are used by most Android applications to traverse data
retrieved from a CP or database. Neither JPF nor JPF-Android
attempts to store the state or backtrack the content in a database.
To enable the application code using cursors, we use a default
cursor implementation traversing a data set containing only a single
entry. We then use generated method models mapping speci�c
parameters to runtime return values to improve the coverage. In
both of these components the models are also edited manually to
throw exceptions or return unobserved values to increase coverage
even further.

We use the same approach for form �elds (Checkbox, EditText)
throughout the application. JPF-Android does not include the state
of these �elds as part of the application state, but rather returns a
set of possible values con�gured by the user non-deterministically
when their values are retrieved by the application code.

Side-e�ects required for more speci�c property veri�cation re-
garding API’s usage patterns need to be included manually or re-
tained using OCSEGen [23].

Over the course of the last few years we created 417 models
totaling around 32k Lines of Code (LOC) 2. The original Android
application framework, excluding external services, exposes 1402
classes — many of which are reused by JPF-Android. JPF-Android
models can be adapted for JUnit Testing. Table 1 lists other com-
monly used dependencies in the Android environment and how
they are modeled.

5 EVENT GENERATION
Android applications require events (also called messages) to drive
their execution. Events can be triggered by the application code
itself or by local and external services. The application can start
another Activity or start/stop a Service for example. Applications
also register callbacks in local or external services. These include
registering Broadcast Receivers, setting listeners on UI elements
or subscribing to sensor/service updates. The event producer in
JPF-Android only �res events that originate from the user or from
external and local services — all of which are not available in JPF-
Android.

Events can be �red at anytime on an Android device, but to
reduce the scheduling possibilities and number of events �red, the
event producer is only called when the application’s message queue
is empty and all threads are waiting for new events to continue
execution. At this point the event producer collects the set of
enabled entry-points and generates a set of corresponding events
to �re non-deterministically. When no more events are returned
by the event producer, the analysis stops exploring that path and
backtracks to a previous choice point.

An event consists of a type mapped to the speci�c entry-point of
the application, a set of parameters used as arguments for the entry-
point method and the window name for which it is �red. Common
events �red by JPF-Android include: UIEvents, KeyPressEvents,

2Models are available at: https://bitbucket.org/heila/jpf-android/src

https://bitbucket.org/heila/jpf-android/src
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Table 1: Common dependency models

Service Description Model

Resource Manager Retrieve Strings, images or raw data Retrieves values from XML or uses default values
System Properties Lookup underlying system properties Default models using runtime values
Layout In�ater In�ates GUI from XML layout �les Reusable manual model in�ating GUI from XML
Media Player Play media �les Reusable manual model from default models
Content Retriever Browse data associated with URI using

cursor
Reusable manual model mapping URI to cursor — default
model for cursor using runtime values

Database Interface Access and query a DB Reusable manual model based on models to retain side e�ects
- returns cursor utilizing runtime values

HTTP Requests Make complex HTTP requests Default models returning runtime values
File I/O Access �les on storage Reuse JPF models, mount /storage to resolve paths

MenuItemEvents, SharedPreferenceEvents and SystemEvents. Us-
ing correct parameters for events are important since incorrect
parameters can lead to unexpected crashes in the entry-point code.
Service models are required to pre-de�ne default parameters of
entry-points, but these values can be improved by enabling dy-
namic event generation where generated events are re�ned using
pre-collected runtime, manually, symbolically or statically collected
values stored in a database.

In theory we want to explore all possible event sequences, but in
practice — even with state matching — this is not always possible
in an acceptable time or given resource limitations. For this reason
we developed the event producer in such a way that it can be
extended to implement di�erent event generation strategies. The
tool provides the following event generation strategies:

Script Allows users to write scripts containing sequences of
events [24]. Scripting event sequences is useful to analyze
speci�c application behavior that might be hard to reach
or may require speci�c environment con�gurations. This
approach limits the environment and application behavior
to allow a more exhaustive exploration of the application.
But, writing scripts requires in-depth knowledge of the
application and its environment.

Dynamic Fires all possible events non-deterministically.
Heuristic Reduces the analysis size by only �ring each event

once in a path.
JPF-Android starts by �ring one entry-point — the main Activity

de�ned by the application. If the application �nishes this Activity
and the Activity stack is empty, it stops execution in that branch
(the main Activity is not restarted).

6 MODEL CHECKING
To analyze Android applications more e�ciently we make use of
explicit state model checking using JPF. JPF allows us to explore
choices non-deterministically and to use state matching and back-
tracking to bound and reduce the search space. It also exposes a
listener API to track the execution of the application at byte-code
level. But all of these features come at the cost of creating more
complex environment models and higher resources requirements.
In this section we discuss how we utilize the functionality provided
by JPF to improve the coverage and e�ciency for analyzing Android
applications.

6.1 Choices
There are three type of choices in the Android environment model:
thread choices, event choices and environment data choices.

Thread choices are used to explore di�erent thread inter-
leavings to �nd deadlocks and race conditions. These
choices are managed by JPF.

Event choices are created each time the event producer needs
to �re a new event from a list of possibilities.

Environment data choices are used to explore di�erent re-
turn values in environment models.

Exploring choices non-deterministically allows systematic ex-
ploration of application paths to ensure paths are not missed. It
also allows us to explore all choices as soon as they occur instead
of having to wait until the next time the choice point is reached (if
it is ever reached again). This allows us to achieve better coverage
in shorter sequences.

We want to explore all possible choices to maximize the coverage
the tool obtains. But the number of choice combination and states
increases exponentially for each additional choice. To improve the
scalability of the analysis, JPF-Android can be con�gured to reduce
choices by only making environment choices once — the �rst time
the choice-point is reached in a branch. At this point all choices
are explored non-deterministically. The next time the choice point
is reached the same choice is returned and the execution is not
branched. Although all choice combinations are not explored in
this case, it scales the analysis so that JPF can at least analyze all
choices once.

6.2 State Matching
State matching bounds the execution of the application by stopping
the exploration of paths when they reach a previously explored
state. Counters and variables keeping track of any type of history
stops state matching and should be excluded from the state. This
complicates the creation of models. Classes and objects that contin-
uously keep on changing can be detected using StateComparator [5]
and can be excluded from the state using JPF’s @FilterField an-
notation or other con�guration options discussed in [5].

JPF-Android further optimizes state-matching by pre-loading all
application classes and application speci�c models. It also rede�nes
the state of loaded classes as only the state of their non-�nal static
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�elds. The main reason for these optimizations is that an event can
explore behavior in the code that loads new classes but that has
no other side-e�ects on the state. In this case we do not want to
continue the search otherwise the event would have to be executed
again before the state can match.

6.3 Analyzing the Execution
To compare JPF-Android to current dynamic analysis tools we need
to measure the code coverage of the application during execution.
To ensure coverage is calculated in the same way as the other
dynamic tools we implemented an EMMA 3 coverage listener. The
coverage can be calculated per branch or across all branches. The
listener requires the application to be instrumented with EMMA
before execution. The instrumentation �elds inserted into classes
by EMMA are excluded from state-matching. We then provide a
model for the EMMA rt.java class to natively collect the coverage
and generate a report at the end of the run.

To track explored event sequences we provide the EventTree
Wrapper listener storing all event sequences in an event tree. An
event is added to the tree when it is returned by the event producer.
The children of an event are the set of events �red by the event
generator after the parent event was processed. The root of the
tree is the �rst event that started the application i.e. the event that
starts the main Activity of the application. The tree keeps a pointer
to the current event processed by the framework model. When an
error occurs the tool traces back the sequence of events leading to
an error using the current path in the tree. This event sequence
can be used to create a test case to verify the error on the emulator.
The listener also keeps a list of all unique events it �red (can be
used for script writing) and prints out a summary of the number
of sequences and a histogram of the lengths of the sequences. The
event tree is kept natively and is excluded from the application state.
We do however backtrack the pointer to the current event in the
tree to ensure it records correct event sequences when backtracking
to another choice earlier in the tree.

JPF de�nes a property that is violated when uncaught or spe-
ci�c exceptions are thrown. We enable this property and throw
an InvalidEventException if an event causes an exception in the
application execution.

JPF is con�gured to detect race conditions and deadlocks. To
detect concurrency errors JPF explores all thread interleavings
while ensuring the application does not reach a state where all
threads are waiting or blocked or where concurrent �eld accesses
cause a race. Exploring all possible thread paths is a resource
intensive process and can often not be combined with event and
environment data choices. To reduce the search space when not
looking for concurrency errors we provide a con�guration option
to only explore a single thread interleaving. By default the tool
always executes the last started thread until it is done or waiting
after which it continues to the previous thread. JPF-Android can
also use a random thread schedule but then the tool needs to be
rerun a few times.

The depth of the search space can be bounded when state match-
ing is not possible or when state matching only occurs at such a

3http://emma.sourceforge.net

deep level that it might not be reached it in a suitable time. JPF-
Android allows bounding the depth by either limiting the state
depth in the state-transition graph or the event sequence length
across all paths in the event tree. However e�cient, this type of
bounding can lead to low coverage. Ideally we want to explore a
path until a state match occurs.

7 EVALUATION
We evaluate the e�ectiveness and e�ciency of our approach by an-
alyzing a set of representative applications shown in Table 2. These
applications vary in terms of LOC and number of components. The
table also shows the number of application speci�c models gen-
erated and the number of entry-points detected by JPF-Android.
This indicates the size of an application’s environment. SyncMyPix,
K9Mail and Keepassdroid for example have many entry-points, so
they have many possible event sequences. For the �rst experiment
we compare the statement coverage, number of event sequences
and the execution time of JPF-Android to two current state-of-
the-art dynamic analysis tools for Android: Dynodroid [17] and
Sapienz [20]. Experiment two compares di�erent heuristics imple-
mented by JPF-Android and the e�ect they have on the coverage
and the number of paths and states explored.

7.1 Experiment 1: Code Coverage
We measure the statement coverage obtained by the tools using
EMMA and exclude all classes enabling code coverage calculation
for Android and external libraries. This gives a more accurate rep-
resentation of the application’s coverage. Code coverage does not
take into account that defects and risk are not distributed uniformly
across the application code or tell us anything about the correctness
of the analysis, but it shows us what code was never analyzed [9].

Dynodroid [17] and Sapienz [20] analyze applications on the
emulator. Dynodroid is a dynamic analysis tool that uses a biased
random input generation approach, �ring events more often if they
are relevant in more contexts. It records the coverage and events
executed. For this experiment we use the virtual-box provided
by Choudhary et al. [6] to execute Dynodroid. Since Dynodroid
makes use of a random input generation approach we again follow
the example of Choudhary et al. [6] and execute each app for ten
runs of an hour long — e�ectively executing ten event sequences
of +/-400 events. Since we can use multiple virtual machines this
accumulates to 12 hours of analysis time after which the coverage of
all runs are merged. Sapienz uses a systematic Pareto-optimal multi-
objective search based approach. It employs random fuzzing and
string seeding to maximize coverage and minimize event sequences.
Sapienz makes use of multiple concurrently running emulators to
generate event sequences. The coverage of generated sequences
are used to improve the generation of following event sequences.
We repeat the experiment as performed in the paper by Mao et al.
[20] and run each application on the tool for an hour. The tool
generates a test suite and coverage reports for each test sequence
which we merge to obtain the �nal coverage.

Before running JPF-Android on the applications, application
speci�c models are generated for dependencies and re�ned to obtain
higher coverage. This processes takes more or less a day depending
on the the user’s knowledge of the application. Once setup, these

http://emma.sourceforge.net
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Table 2: The apps used for evaluation. Their size is given in LOC and number of components: Activity (A), Service (S), Broadcast
Receiver (BR), Content Provider (CP). The number of models and entry-points (EP) show the size of their environment.

Version LOC A S BR CP Models EP

Calculator 2.0 114 2 0 0 0 2 40
AutoAnswer 1.5 140 1 1 2 0 8 10
RMP 1 315 1 1 1 0 4 11
AnyCut 0.5 692 4 0 0 0 5 18
RSSReader 2.0 774 2 1 1 0 6 6
aGrep 0.2.1 1505 5 0 0 0 3 24
Tippy Tipper 1.1.3 1771 5 0 0 0 10 52
PasswordMaker 1.1.7 2310 3 0 0 0 8 30
SyncMyPix 0.15 4081 8 1 2 1 53 31
Keepassdroid 1.9.8 4972 14 1 3 0 56 69
Ringdroid 2.6 5394 3 0 0 0 37 40
k9mail 3.512 47931 25 5 5 2 114 33

models can be reused for future runs, other applications or could be
adapted for JUnit Testing. To obtain maximum coverage all possible
paths in the environment must be explored by JPF-Android. But,
even with all the techniques and heuristic implemented by JPF-
Android, it is not always possible due to the number of choice
combinations. For this experiment we con�gure JPF-Android to
do a heuristic search, limiting events to only be executed once
per Activity per path. Event sequences are bounded at length 20
and search depth is limited to 1000 states. We con�gure the tool
to explore all environment choices once non-deterministically for
each event sequence, whereafter the value is cached for the rest of
the path. We further limit the tool to a single thread scheduling
that always chooses the last started thread before returning to the
other threads.

Table 3 shows the coverage achieved for each application. The
highest coverage achieved for each app is highlighted. JPF-Android
obtained a mean coverage of 69.5% compared to Dynodroid’s 56.6%
and Sapienz 50.8% over the set of apps. We found that Dynodroid
and Sapienz achieve similar coverage due to the fact that they both
run on the emulator which has many limitation with regards to
environment con�guration. Sapienz runs on a newer emulator
with more behavior and in some cases can achieve better coverage
due to it using seeded String values. For Dynodroid these values
were hard coded to expose more application behavior. JPF-Android
achieved higher or similar coverage in all but two applications:
PasswordMaker and aGrep. aGrep contained a large amount of
GUI code to construct custom widgets. Since JPF-Android does not
model GUI measurements and drawing, it could not cover this code.
PasswordMaker depended on multiple �ring of the same event in
JPF-Android which was not enabled in this run to limit the search
space.

JPF-Android explores all sequences systematically. It completed
exploration before reaching state depth (set to 1000) or maximum
event sequence length (set to 20) for all applications except for
Keepassdroid. On further inspection we saw that this application
has 14 Activities and so sequences of length 20 are not su�cient
to cover all entry-points. With JPF-Android’s optimizations for

preferences, the length and number of events explored cannot di-
rectly be compared to the other tools but it is clear that not �ring
events to change the preferences helps to shorten event sequences.
The total number of paths explored by JPF-Android is given in
column 5. JPF-Android’s analysis time was between 2s and 7 min-
utes for nine of the apps, but increased to over two hours for the
three more complex and larger apps Ringdroid, Keepassdroid and
PasswordMaker. Sapienz explored sequences of length between
20-500. Dynodroid explored sequences of length between 197 to
754 events per run per app with an average of 441 events per run
across all apps. The problem with these tools is that there is no
way to know if maximum coverage has been reached or when to
kill the analysis. Additionally we can see that only a small number
of possible paths explored by JPF-Android has been explored by
the other tools which leads us to the conclusion that they require
longer sequences.

7.2 Experiment 2: Heuristics
This experiment evaluates the e�ect of the di�erent heuristics im-
plemented by JPF-Android. To evaluate the di�erent heuristics, we
compare the number of states, number of paths, the code coverage
and the execution time for event sequences of length four. Table 4
shows the results.

7.2.1 Event Generation. The “Heuristic” column shows the re-
sults of using JPF-Android’s heuristic event generator (also used
in experiment 1), but bounding the analysis to event sequences
of maximum length four instead of 20. We found that for most
applications the coverage is very close to that of experiment 1. In
other words the apps �re most entry-points at least once for se-
quences of length four, although all paths of the application is not
explored. A path can �re an entry-point again given a di�erent
context further down the path trigging new application behavior.
Applications with many entry-points can require longer sequences
to reach entry-points. Keepassdroid, for example, has 69 entry-
points and 14 Activities and its coverage deceases by 14% when
shortening the sequences to length four.

For the “Default” column we used the default event generator to
see the impact on coverage when allowing events to occur multiple
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Table 3: Shows the statement coverage for Sapienz (S), Dynodroid (D) and JPF-Android (J). For JPF-Android we also show the
number of new states explored (#S), the number of Paths (#P) number of environment choice points (#C) and runtime (t).

Coverage % JPF-Android
S D J #S #P #C t

Calculator 97 97 96 17 128 3 4s
AutoAnswer 31 67 98 57 87 37 4s
RMP 62 93 95 372 484 65 14s
AnyCut 72 69 88 98 74 21 4s
RSSReader 34 - 87 36 20 9 2s
aGrep 63 67 54 21 322 0 17s
Tippy Tipper 86 79 88 1182 2947 363 2s
PasswordMaker 80 48 66 156k 178k 163 3h29m43s
SyncMyPix 20 20 45 12k 4518 516 6m49s
Keepassdroid 15 22 47 31k 67k 95k 2h42m15s
Ringdroid 44 - 53 179k 150k 2590 2h28m38s
k9mail 6 4 17 1290 1222 0 5m54s

Table 4: Shows the results of using a heuristic event generator, default event generator, no state matching and no runtime
values for event sequences of length four.

Heuristic Default No State Matching No RV
# S # P t (s) C% # S # P t (s) C% # S # P t (s) C% C%

Calculator 20 97 3 96 20 120 4 96 10294 9414 1m18 96 96
AutoAnswer 54 71 4 98 55 72 4 98 213539 74752 20m23 98 22
RMP 265 265 8 93 329 412 10 95 2335 1680 29 93 93
AnyCut 23 19 2 83 23 19 2 87 34 19 2 83 87
RSSReader 36 19 2 87 52 25 3 87 140 41 4 87 39
aGrep 115 107 6 54 125 145 7 56 493 346 11 54 49
TippyTipper 341 491 19 88 342 506 22 88 97903 64518 41m11 89 84
PasswordMaker 55 58 5 64 54 62 5 65 t/o t/o t/o t/o 65
SyncMyPix 545 155 15 45 592 178 17 45 2571916 t/o 3h02m06 t/o 33
Keepassdroid 140 131 17 33 210 205 25 33 7191 4520 9m11 33 25
Ringdroid 1151 1000 46 53 1283 1196 58 53 t/o t/o t/o t/o 28
k9mail 91 58 18 17 112 83 25 17 t/o t/o t/o t/o 17

times within an event sequence. The default event generator in
JPF-Android �res all possible events whereas the heuristic event
generator only �res each event once in a branch. The results show
that the number of states and paths increases signi�cantly for such
short event sequences while only improving the coverage of a
subset of the apps by less than 5% each.

7.2.2 State Matching. To bound sequence length we use state
matching to stop exploring a path when it reaches a previously
visited state. The column entitled “No state matching” shows the
results of disabling state matching. We can see that the number
of states explodes and that three of the 12 apps do not complete
or hit the state depth bound of 1000 within �ve hours. The results
of this run highlight the actual size of the state space for these
applications and the reduction in the number of states when using
state matching.

7.2.3 Runtime Values. JPF-Android uses runtime collected val-
ues in preferences, cursors and parameters for events. In the “No

RV” column we show the decrease in coverage when runtime values
are disabled. The coverage reduces by an average of 10%. Addition-
ally removing runtime values and using default values made 8 of
the 12 apps crash during the analysis.

7.3 Discussion
7.3.1 Coverage. Although JPF-Android achieved higher cover-

age for most of the applications, it could not fully cover all appli-
cation code in experiment 1. The challenges JPF-Android faces
include:

Dead Code All the applications contains dead code. This in-
cludes unused code left from a previous app version. Covering this
code is impossible for the other tools including JPF-Android.

Exceptions Java applications contain many try-catch blocks.
Since JPF-Android models the environment it can throw exceptions
and return invalid values to cover all exceptional code. Enabling
this behavior while verifying the entire application explodes the
already large state space.
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File System For certain applications such as Keepassdroid, Pass-
wordMaker and Ringdroid the application executes di�erent code
depending on the �les on the �le system. JPF-Android does not
backtrack �le creation/deletion or state since this information re-
quires too much resources to keep a copy of the �les for each state.
It does, however, allow the application to create and delete �les to
enable code.

Database Backtracking the state of a DB is not feasible when
using JPF. We found that returning runtime and default values from
cursors achieves acceptable coverage for many applications. But
some applications use too many cursors returning di�erent data so
that runtime values had to be reduced in order the make analysis
feasible.

GUI Measurements and Drawing JPF-Android abstracts the
GUI heavily and does not �re onDraw or onMeasure callbacks. This
limits the coverage of custom views that utilize these methods or
rely on the values of the physical dimensions of the applications.

Thread Scheduling JPF-Android only explores a single thread
interleaving. The main problem with this approach is that certain
applications like SyncMyPix execute di�erent code depending on
when external threads �nish. When run a few times with random
thread choices SyncMyPix achieved a coverage of 56% compared to
its 45% reported for the default JPF-Android threading policy.

Event Generation The heuristics we use to reduce the event
sequences are not always e�ective enough to reach all paths in the
application.

7.3.2 Comparison to Other Tools. An important consideration
when comparing dynamic analysis tools is how to compare the
events/event sequences generated by the tools. In the case of Dyn-
odroid, the longer the tool runs, the longer sequences are generated
and the number of runs determine the number of sequences ex-
plored. Sapienz limits the event sequences generated to between
20-500 events. Another consideration before comparing event se-
quences is if device con�guration changes are counted as events.
In JPF-Android the number of event sequences di�ers depending
on whether we count a sequence twice if it happens for another en-
vironment con�guration. That is the reason why we rather report
the number of paths explored by JPF-Android.

7.3.3 Environment Modeling. The environment model enables
JPF-Android to explore event sequences and environment con�gu-
rations in a controlled environment and enable behavior di�cult or
impossible to trigger on a device or emulator. We manually checked
the component life-cycle method traces of applications running
on the tool against the traces generated on the emulator. We do
not, however, try to prove the soundness or completeness of the
models. In future work this can be done by verifying that the paths
generated for each application is possible on the emulator. This
might not be so simple, however, since the emulator does not have
control over all environment con�gurations.

7.3.4 Bug Reporting. Although JPF-Android did not report any
bugs, in two of the applications, SyncMyPix and AnyCut, it reported
that application threads were still waiting (blocked) and never
killed by the application before terminating. Sapienz reported an
unique crash in four of the twelve apps. In two of the applications,
Ringdroid and PasswordMakerPro JPF-Android did not cover the

lines of code where the exception occurred. The exception in K9mail
was a crash in the framework code. The last error was found in
Ringdroid where a cursor was accessed after it had already been
closed. We stubbed the cursor in such a way that we could not
detect this error.

8 RELATEDWORK
There is a whole body of work using static analysis for detecting se-
curity and privacy violations in Android applications [3, 7, 8, 14, 16].
Two drawbacks of using static analysis is that it reports false pos-
itives and does not provide an event sequence or environment
con�guration to dynamically verify that errors exists. It also re-
quires modeling for unavailable or native code. Work has been
done to model external code for static analysis using data �ow
summaries [2]. Our work, however, focuses on performing path
sensitive dynamic analysis.

Many of the dynamic analysis tools for Android apps run apps
on the emulator to simplify testing because of the complex en-
vironment of Android applications. Monkey 4, for example, is a
random testing tool shipped with Android and �res random events
to exercise application code. It detects errors in the form of Ex-
ceptions. Dynodroid [17] is built on the Monkey API and focuses
on improving coverage by using a heuristic event generation ap-
proach. Sapienz [20] makes use of multiple emulators to generate
event sequences and identi�es an optimal set of sequences using the
Pareto-optimal genetic search algorithm to maximize the coverage
and minimize event sequences. Other tools instrument applica-
tions and then analyze their logs to identify errors [10], resource
leaks or race conditions [19]. These tools only consider a single
event sequence and need to be run several times to obtain su�cient
results. Tools such as Evodroid [18], Trimdroid [21] and MagiC
generate Android or Robotium 5 JUnit test cases to exercise the
application code. All of these tools require environment modeling
to some degree to achieve satisfactory coverage. This may include
modeling an HTTP connection, connecting to a remote service or
simulating a certain environment state. They also need to gener-
ate event sequences and speci�c event parameters to enable code
coverage.

To help developers improve code coverage for JUnit tests, the
Android SDK provides a few mock classes used to test application
behavior. There are also mocking frameworks such as mockito that
generate stubs for classes. These models di�er too much from JPF-
Android’s requirements to re-use them. For unit and component
testing we test smaller parts of the application so the model environ-
ment is smaller and less complex. To enable component interaction
and correct life-cycle management of components, we require a
more complex model of the environment. Recent work [11] also
started to use design pattern recognition of dependencies to model
them automatically using prede�ned implementation of these pat-
terns. Although very promising work, we found that in a large
framework such as Android, design patterns are blurred and de-
pendencies and object hierarchies severely complicate automatic
modeling. However, even these tools and techniques can bene�t

4http://developer.android.com/tools/help/monkey.html
5http://code.google.com/p/robotium/

http://developer.android.com/tools/help/monkey.html
http://code.google.com/p/robotium/


SPIN’17, July 2017, Santa Barbara, CA, USA H. Botha et. al.

from using runtime/static/symbolically collected values for their
models.

Research has also been done on collecting event sequences of
Android application using GUI models of the applications [26].
The main problem these tools face is that Android applications’
entry-points are enabled and disabled dynamically during runtime
which makes it hard to determine valid sequences. They also face
the problem that applications respond to system events that can
be �red at any time while the application is running resulting in
complex models.

Trimdroid [21] minimizes test sequences statically using depen-
dency analysis between event handlers to reduce test cases. In
contrast JPF-Android implicitly performs dependency analysis us-
ing state matching and supports system events and environment
con�guration not supported by Trimdroid.

GreenDroid [15] makes use of JPF to detect energy problems by
tracking API usages. It models dependencies manually and ran-
domly generates events to �re entry-points. The code coverage
they obtain is low — less than 39% for all but one small application.
JPF-Android focuses on improving coverage for Android applica-
tions while reducing the search space. The techniques we employ to
optimize our tool could easily by used to improve its e�ectiveness
and e�ciency of this tool.

Advanced techniques, such as symbolic execution [22], require
extensive modeling and can only verify small parts of the app at a
time (such as a speci�c entry-point) since they is computationally
expensive. Also, symbolic analysis tools cannot analyze behavior
dependent on complex objects or that performs complex computa-
tions. Symbolic execution can however be used as a complementary
approach to identify entry-point parameters or return values for
models to improve coverage.

9 CONCLUSION
JPF-Android addresses the challenges of dynamic analysis by mak-
ing use of a con�gurable environment built on JPF to analyze ap-
plications. It allows systematic exploration of the application for
di�erent environment con�gurations and makes use of state match-
ing and backtracking to reduce event sequence length. It searches
for the shortest event sequences to errors and records all discovered
event sequences and environment con�gurations.

In future work we plan to translate these discovered sequences
to JUnit test cases to be run on the emulator. We also want to look
into bug-seeding to evaluate the e�ectiveness of the tool. Lastly
we want to use a form of partial order reduction to reduce event
sequences by analyzing the e�ect of an event on the application
state statically before �ring it.
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