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ABSTRACT
Software applications are developed to be executed in a specific
environment. This environment includes external/ native libra-
ries to add functionality to the application and drivers to fire the
application execution. For testing and verification, the environ-
ment of an application is simplified/abstracted using models or
stubs. Empty stubs, returning default values, are simple to gene-
rate automatically, but they do not perform well when the appli-
cation expects specific return values. Symbolic execution is used
to find input parameters for drivers and return values for library
stubs, but it struggles to detect the values of complex objects.
In this work-in-progress paper, we explore an approach to gene-
rate drivers and stubs based on values collected during runtime
instead of using default values. Entry-points and methods that
need to be modeled are instrumented to log their parameters and
return values. The instrumented applications are then executed
using a driver and instrumented libraries. The values collected
during runtime are used to generate driver and stub values on-
the-fly that improve coverage during verification by enabling the
execution of code that previously crashed or was missed. We are
implementing this approach to improve the environment model of
JPF-Android, our model checking and analysis tool for Android
applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Test-
ing tools

Keywords
Android Application, Environment Generation, Verification

1. INTRODUCTION
Software applications are difficult to analyze and verify because
their execution directly and indirectly depends on their environ-
ment. This environment includes the hardware configuration, the
I/O devices available, the architecture of the CPU, as well as
the operating system, drivers, libraries and even other external
applications. Applications can react differently for different con-
figurations. Therefore, to ensure the stability of an application,
it must be thoroughly analyzed and tested resulting in a large
number of tests.

In order to dynamically test, verify or analyze the behavior of an
application, we limit the behavior and state of the environment
using mocks, stubs and models. One approach to environment
modeling is to manually create generic models that can be re-
used by many applications and improved and extended over time.
Developing generic models is difficult since it requires in-depth
knowledge of the internals of the component.

NetIO [2] and NetStub [1] are tools that model the network library
for Java applications. NetStub provides manually created stubs
for distributed Java applications and supports capturing the in-
teraction between the applications for use as a driver during unit
verification. NetIO allows a single Java application (either client
or server) to run on Java PathFinder (JPF) [9] and interact with
its counterparts running external to the verification tool. This in-
teraction is cached to allow JPF to backtrack of the state-space.

The modeling process can be assisted by using automatic model
generation tools such as OCSEGen [6]. OCSEGen uses static
analysis of Java byte-code to create stubs retaining certain side-
effects and return values. It can generate models returning three
types of values: default, choice or symbolic values. Returning de-
fault values can miss interesting behavior of the application, but
it works well for cases where the application component calling
the stub does not rely on the content of the return value. Altern-
atively, generated methods can return a set of all possible return
values, but this results in too many possibilities to verify. Sym-
bolic objects can also be returned by the stubs if the application
is run on a symbolic execution tool such as Symbolic PathFinder
(SPF) [4]. However, OCSEGen has limitations typical to static
analysis: it may produce over-approximation of side-effects and
cannot analyze native code.

Another tool, nHandler [5], automatically models methods of li-
braries / applications on Java PathFinder (JPF) [9]. It delegates
the method execution to an instance of the object in its actual
environment on the Java Virtual Machine (JVM) and then con-
verts and returns the result from the modeled method in the JPF
environment. This approach assumes that the object can be in-
stantiated and run directly on the JVM, which is not the case for
Android applications since their external libraries are not avail-
able outside of the Android environment.

This approach, however, explores how values observed during dy-
namic analysis can assist driver / stub generation for testing and
verification purposes. We implement our approach for Android
applications with many external dependencies that need to be
modeled, to verify the application in a closed, finite state envi-
ronment. We show how our approach can enable the execution
of application code that cannot otherwise be executed using the
default stubs and driver of our Android application analysis tool,
JPF-Android [8].

2. BACKGROUND
2.1 The Android platform
Android applications consist mainly of Java code. They are com-
piled against a stubbed version of the Android library before being
converted into DEX byte-code and uploaded to a Android device.



Android applications consist of a set of loosely coupled compo-
nents, built on top of an extensive application framework. The
framework provides the core implementation of an application.
Android applications consist of four main components1. Activities
are used to construct and control the different windows of the ap-
plication. Services are used to run operations not associated with
a user interface (UI), such as data processing and network connec-
tions. BroadcastReceivers (BR) implement a publisher-subscriber
design pattern to allow applications to subscribe to system events
in the form of Intents. ContentProviders perform create, read,
update and delete (CRUD) operations on content stored in files
or databases and share this content between applications. These
components are all executed by the main thread of the application
in response to messages received from the Android system server.

Android applications are executed in their own Linux process,
sand-boxing their execution on the Dalvik VM and their applica-
tion data from other applications and from the system. The Java
native interface (JNI) allows Android applications to call native
C/C++ methods from the Java code. Local and remote services
often call native code to communicate with drivers written in
C/C++.

The Android system server consists of multiple concurrently run-
ning services. These services process user and system events ge-
nerated by native drivers (display- and network drivers) as well
as Android applications. These services drive applications by pla-
cing messages on the applications’ message queues to be processed
by their main thread. All data/messages sent between the ap-
plication and system services need to cross process boundaries.
This communication is managed by the native Binder driver which
stores unique references for all Binder services.

2.2 Modeling the Android application environment
In our previous work we developed JPF-Android — a model
checker and analysis tool for Android applications [8] built on
JPF. The purpose of JPF-Android is to enable Android appli-
cations to run in an environment that allows us to track their
execution and listen for specific property violations. In this ap-
proach, more accurate results are obtained by executing a greater
proportion of application code.

Android applications are designed to run on the Android software
stack, which is only available on Android devices. To run the
applications on JPF, an extensive environment model is required
to create a closed, finite state system.

At a high level, the environment of an application consists of
two main components: the driver (which calls the application
code) and the stubs (which model components called from the
application) [6].

JPF-Android provides a default driver that generates and fires
all possible input event combinations by making use of static
and dynamic analysis to detect entry-points of the application
at runtime. The driver currently makes use of default arguments
for these generated events since determining more suitable values
requires a more complex analysis such as symbolic execution.

JPF-Android includes many environment models created manu-
ally for components required by the application such as file man-
agement, XML- and resource parsing, network connections and
database interactions. It also includes automatically generated
default stubs generated using OCSEGen for components we are

1http://developer.android.com

not interested in verifying at this time or could not analyze due
to native method [7]. These stubs include components related to
the GUI drawing implementation, OpenGL, animation and many
more. There many components that need to be modeled and we
are creating these stubs on a per app basis and adding them to
the tool as required.

2.3 Motivating Example
Listing 1 shows the MusicReceiver BroadcastReceiver compo-
nent of the RandomMusicPlayer Android application implemen-
ted to respond to media button presses on the physical device.

1 public class MusicReceiver extends
BroadcastReceiver {

2

3 @Override
4 public void onReceive(Context ctx, Intent intent)

{
5

6 String action = intent.getAction();
7 if (action.equals(Intent.ACTION_MEDIA_BUTTON)){
8

9 Bundle bundle = intent.getExtras();
10 KeyEvent keyEvent =

(KeyEvent)bundle.get(Intent.EXTRA_KEY_EVENT);
11

12 switch (keyEvent.getKeyCode()) {
13 case KeyEvent.KEYCODE_MEDIA_PLAY_PAUSE:
14 ctx.startService(new Intent(...));
15 break;
16 case KeyEvent.KEYCODE_MEDIA_PLAY:
17 ctx.startService(new Intent(...));
18 break;
19 case KeyEvent.KEYCODE_MEDIA_PAUSE:
20 ctx.startService(new Intent(...));
21 break;
22 }}}}

Listing 1: Extract from RandomMusicPlayer

1 <receiver android:name=".MusicReceiver" >
2 <intent-filter>
3 <action android:name="android.intent.action.

MEDIA_BUTTON" />
4 </intent-filter>
5 </receiver>

Listing 2: Extract from AndroidManifest.xml

1 public class Intent implements Parcelable,
Cloneable {

2 private String mAction;
3 private ArraySet<String> mCategories;
4 private Bundle mExtras; // map of extra objects
5 ...
6 }

Listing 3: Extract from Intent.java

BroadcastReceivers are registered for specific Intent objects by
using IntentFilters. These filters can be extracted from the An-
droidManifest.xml file (Listing 2) when the application is installed
or they can be specified when registering a BroadcastReceiver dy-
namically in the code. IntentFilters specify the action, categories



and data that an Intent has to match to be forwarded to the
BroadcastReceiver. Intents can also contain any number of ex-
tra Java objects stored in the Bundle object of the Intent. The
Bundle stores a map of String-Object pairs containing extra in-
formation about the event (see Listing 3).

The MusicReceiver’s onReceive() method is an entry-point of
the application and is called by the JPF-Android driver (List-
ing 1). Using static analysis we parse the AndroidManifest XML
file to determine the action and categories of Intents that must
be fired. In the above example the action of the Intent must be
set to MEDIA BUTTON.

JPF-Android has no way of determining what objects should be
contained in the Bundle of the Intent and so keyEvent is set to
“null” on line 10 of Listing 1. The code then crashes on line 12 due
to a null-pointer de-referencing exception. In addition, symbolic
execution tools such as SPF have difficulty analyzing this code
because of the complex structure of the Intent and Bundle objects.

1 if (android.os.Build.VERSION.SDK_INT >= 8)
2 mAudioFocusHelper = new AudioFocusHelper(

getApplicationContext(), this);
3 else
4 mAudioFocus = AudioFocus.Focused;

Listing 4: Extract from RandomMusicPlayer

In Listing 4, our next example, VERSION.SDK INT is a static
field of the android.os.Build class set by calling a native me-
thod in the android.os.SystemProperties class. The model
of the SystemProperties class needs to return an Android SDK
version of 8 as well as another version to ensure both branches of
this if-statement are executed. Our current model of SystemPro-
perties is a default stub and returns an empty String for String
properties requested. Instead of returning default values, we want
to automatically look up possible return values for native methods
and then execute the code in Listing 4 non-deterministically for
build version “8” as well as another valid Android SDK version.
Symbolic execution can detect these values, but it requires envi-
ronment generation to analyse the method as well as stub gener-
ation to create a model using the values it detects.

3. OVERVIEW OF OUR APPROACH
This research explores generation of drivers and stubs using dy-
namically collected method parameters and return values for test-
ing/analysis. To collect these values we instrument methods in
the application (and its libraries) to log their input parameters
and return values when run in their original environment. More
specifically, the following information is recorded for each method:

Application name By storing the application name, we can col-
lect logs over many runs of the application and combine their
inputs/results.

Unique run number The run number allows us to filter the
logs printed during a specific run of the application.

The class signature The class information allows us to distin-
guish between methods with the same name.

The method signature This is used to identify the method
that printed the log entry.

Input parameters Input parameters are used as “extra infor-
mation” to filter the results of a method. The input para-
meters are also used to generate more accurate input values
for entry points.

Return value We want to retrieve these values to use in method
stubs.

Java code is injected at the start of a method as well as before each
of its return statements to record these values. The code injected
at the start of a method copies/caches the state of the parameters.
It is necessary to record them before they are updated in the
method. Before each return statement, a statement is injected to
log the information collected about the method.

The parameters and return objects of a Java method need to be
serialized to binary, XML or JSON representations. This enables
us to record the state of a object and de-serialize the state back
into a new object at a later stage.

The instrumented application is run in its original environment
using a driver or test cases. The logs from multiple runs are
collected, parsed and stored in a database where they can be
searched and queried. Since the information we are logging is
structured, we can use a regular expression matcher to parse the
logs into objects that can be stored in an object store or database.

These logs can be queried for the parameters and return values of
a specific method. If more than one return value is stored for the
same input parameters, we can return them non-deterministically
by the stub. Otherwise, if no values have been stored we return
a default value. We use these values to improve the driver and
stubs to produce a higher coverage of the application during a
follow up analysis with JPF-Android.

4. IMPLEMENTATION
To apply our approach to Android applications we need to in-
strument the entry-points of Android applications to collect in-
put parameters to use for event generation, as well as instrument
methods that need to be modeled to collect parameters and re-
turn values for creating stubs. The main purpose of implementing
this approach is to improve the coverage of the application code
by enabling the execution of code that could previously not be
executed with JPF-Android.

4.1 Logging using Flowlogger
To simplify logging from the application, we created an applica-
tion called Flowlogger. Flowlogger contains static methods that
are called from the injected code to serialize the parameters and
return values and to log method information using the Android
logging framework. The application name, class signature and
method signature are passed to Flowlogger from the application as
String values. We use XStream2 to serialize the input parameters
and return values. XStream allows serialization/de-serialization
of Java objects into XML, JSON or binary data. It can both ac-
cess and set all public, protected and private fields of a class or
inner class. Additionally, the user can create custom converters
for objects that contain context specific fields that should not be
stored or used for matching. Flowlogger and XStream are injected
into the libs folder of the application and transformed into DEX
byte-code during the build process.

2http://x-stream.github.io



4.2 Instrumentation of the byte-code
The most popular approach to instrument Android applications
is to use tools such as SOOT3 and Androguard4 to instrument
the DEX byte-code. But since DEX byte-code differs from Java
byte-code, we decided to use BCEL5 to instrument the Java byte-
code generated at an intermediate phase of the application build
process.

The application methods are instrumented to perform three tasks.
Firstly, invoke a static method call on Flowlogger at the start of
the method to serialize its parameters and store it in a String
variable. Secondly, inject byte-code at the position of each return
statement to serialize the return object. Lastly, send the method
information to Flowlogger to log and return.

Instrumenting native methods is not so simple, since they have
no Java implementation. Their method signatures must also be
kept intact since it is used to automatically map native method
definitions to their C++ implementation. To instrument these
methods, we inject a shadow method for each native method in
Java. A shadow method calls its native method but also logs
the input and return values of the native method. All calls to
the original native method are then updated to call the shadow
method.

4.3 Collecting and parsing the logs
The instrumented application is run on the emulator using mon-
key6, an automatic event generation tool for Android. The log
statements generated by Flowlogger are retrieved by connecting
to the Logcat service running on the device.

Logs over different runs and for different applications are parsed
and stored in a database. We use Logstash7 to parse and filter the
logs with specified patterns into JSON objects and output them
to an Elasticsearch instance. Elasticsearch is highly scalable and
a fast JSON object store with an extensive Restful API built
on Apache Lucene. It is commonly used together with Logstash
to perform real-time analysis to monitor the state of large live
systems consisting of many servers. Elasticsearch enables us to
store and index our logs and obtain results for queries against
these logs. To simplify these queries, we developed a Java wrapper
for the Restful API that allows us to query the store for the values
we require.

4.4 Using the log information
Once logs have been processed and stored, we can generate stubs
that look up one or more return values by querying the Elastic-
search instance. If there are no recorded results for a method, it
returns a default value.

To de-serialize and instantiate objects from XML we use XStream.
Some classes in the Android application framework cannot be in-
stantiated on the JVM directly since their fields are initialized
using native methods. However, we require this initialization
when translating them to JPF Objects. In the JPF environment
native methods can be intercepted and modeled using the Model
Java Environment (MJIEnv). On the JVM however, calls to na-
tive methods crash since their native code is not available outside
of the Android environment. To avoid this from happening, we

3http://www.sable.mcgill.ca/soot
4https://github.com/androguard/androguard
5https://commons.apache.org/proper/commons-bcel
6http://developer.android.com/tools/help/monkey.html
7https://www.elastic.co/products/logstash

replace all native methods with default stubs instead. This allows
construction of the required object instances on the JVM.

These instances are subsequently transformed to JPF objects kept
on JPF’s internal JVM. JVM objects can be transformed using
the JVM to JPF object converter part of nHandler to create a
new instance of the object on the heap in the JPF environment.
The same converters can be used to transform the parameters of
a method from JPF to JVM objects to look up the return value
of a method.

5. RESULTS
We are applying this approach to improve our environment model
of Android applications running on JPF-Android. One of the
examples we use is the RandomMusicPlayer Android applica-
tion shipped with the Android SDK discussed in Section II. The
RandomMusicPlayer application obtains high coverage results using
dynamic testing tools such as monkey and Dynodroid [3], which
ensures that we can collect a good set of input parameters and
result values.

1 public class MusicReceiver extends
BroadcastReceiver{

2

3 public void onReceive(Context ctx, Intent intent)
{

4

5 Object[] array = { ctx, intent };
6 String paramStr = FlowLogger.getParamString(
7 "(Landroid/content/Context;Landroid/content/

Intent;)V", array);
8

9 // original method body
10

11 FlowLogger.logMethod("com.example.android.
musicplayer.MusicReceiver", "onReceive",

12 "(Landroid/content/Context;Landroid/content/
Intent;)V", paramStr, null);

13 }
14 }

Listing 5: Instrumented MusicReceiver

1 <android.content.Intent>
2 <mAction>android.intent.action.MEDIA_BUTTON</

mAction>
3 <mExtras>
4 <mMap>
5 <mArray>
6 <string>android.intent.extra.KEY_EVENT</

string>
7 <android.view.KeyEvent>
8 <mDeviceId>-1</mDeviceId>
9 <mKeyCode>126</mKeyCode>

10 ...
11 </android.view.KeyEvent>
12 </mArray>
13 <mSize>1</mSize>
14 </mMap>
15 </mExtras>
16 ...
17 </android.content.Intent>

Listing 6: XML generated by XStream for an Intent
object



Listing 1 shows the MusicReceiver of RandomMusicPlayer con-
taining the onReceive() method. When the application is com-
piled, the MusicReceiver is instrumented to log its input parame-
ters (see Listing 5). We created a custom converter that returns
no XML for Context objects, since the Context is highly depen-
dent on the application and its environment.

The application was executed on the emulator using monkey for
5000 events and we collected 11 log entries generated by the me-
thod. An extract from a log entry containing the input parameters
is given in Listing 6. In Listing 6, the map of extras in the Intent
object contains an android.view.KeyEvent object with key
code 126 which maps to a KEYCODE MEDIA PLAY event.

We wrote a Java application that can look up the set of input
parameters given a method name. The parameters can automa-
tically be converted into Java objects using XStream.

The next step is to extend the JPF-Android driver to look up
input parameters on the fly for input events. If the driver makes
use of the Intent object generated from the XML in Listing 6 as
the parameter, the MusicReceiver can fire without crashing on
line 12 and cover line 16 in Listing 1. The more dynamically fired
events can be collected, the better coverage can be obtained for
this example.

The next example is the get_native() method in android.os.
SystemProperties class contained in the Android library. This
class natively looks up system properties from the device. It is
used by the android.os.Build class in Listing 4 to look up the
SDK version. This method is a good example for this approach
since the method maps String parameters to primitive return val-
ues. Our current model for this class in JPF-Android was gene-
rated automatically and returns an empty String for all String
system properties. We instrumented this method to call Flow-
logger and ran the application on the instrumented platform to
collect the logs produced by the method. We then used the values
collected by the logs to manually improve our SystemProperties
model and improve the coverage of the application by enabling
both branches in Listing 4. The next step is to generate models
that look up a set of return values for the get_native() method
on-the-fly while running on JPF-Android.

6. CONCLUSION
In this research we explore how values collected during runtime
can assist environment modeling. The effectiveness of the ap-
proach relies on dynamic analysis obtaining a good code coverage
of the application. However, if dynamic analysis obtains good
coverage results for the application, why would one want to verify
the application? The advantage of verifying Android applications
on a tool like JPF is that we have fine-grained analysis capabili-
ties that enable us to run more complex analyses on the applica-
tions. This includes listening for properties such as infinite loops,
memory leaks, deadlocks and performing data-flow analysis. It
also allows us to prune the search space using the state matching
and backtracking capabilities of the tool as well as enable us to
use other tools built on top of JPF such as SPF.

Our approach only takes into account the input parameters of a
method to determine and filter its return values. If the return
value or input parameters of the method are dependent on the
global state of the application or environment, we may return in-
correct values. The approach can be extended to record more of
the environment state in a log entry to allow us to return more ac-

curate values. Furthermore, we assume that the methods modeled
using this approach do not have side-effects on the application or
that the side-effects have been retained by OCSEGen.

The next step in this work is to extend JPF-Android to use these
values for input generation of user and system events as well as
using OCSEGen to generate static stubs using the collected val-
ues. We plan to use the approach for modeling services used to
look up the state of the system such as the BatteryManager, Wifi-
Manager, PackageManager and content exposed through Content-
Providers. We can also extend our approach to collect values
using different techniques such as manual inspection or symbolic
execution and then generate models that look up these values.

Generating an environment model is a complex process and no
single technique works for all cases. The key is to identify tech-
niques that can be applied to certain components based on the
requirements of the application. Default stubs are simple to gene-
rate, but do not always provide good coverage results. Symbolic
execution can return all inputs/return values, but cannot always
be run due to the complex nature of the objects involved. Our ap-
proach presents a fully automatic technique that forms the middle
ground between these approaches. It works well in cases where
the execution is dependent on the content returned from models
but the implementation is too complex to currently analyze using
symbolic execution.
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