
Verification of Android Applications
Heila van der Merwe

Computer Science Department
Univeristy of Stellenbosch, South Africa

hvdmerwe@cs.sun.ac.za

Abstract—This study investigates an alternative approach to
analyze Android applications using model checking. We develop
an extension to Java PathFinder (JPF) called JPF-Android to
verify Android applications outside of the Android platform. JPF
is a powerful Java model checker and analysis engine that is very
effective at detecting corner-case and hard-to-find errors using
its fine-grained analysis capabilities. JPF-Android provides a
simplified model of the Android application framework on which
an Android application can run and it can generate input events
or parse an input script containing sequences of input events
to drive the execution of the application. JPF-Android traverses
all execution paths of the application by simulating these input
events and can detect common property violations such as
deadlocks and runtime exceptions in Android applications. It also
introduces user defined execution specifications called Checklists
to verify the flow of application execution.

I. INTRODUCTION

Software applications with many external references and
dependencies are notoriously difficult to analyze and ver-
ify [1]. These external dependencies form part of the context
of the application’s execution, also called the environment of
the application. For the application under analysis to execute
soundly and correctly, an adaptable, controlled environment is
required that reacts correctly and consistently [2].

Android applications form part of this group of open
applications since they have many external references and
dependencies. The environment of an Android application
consists of the Android software stack, which internally has
a client-server design (Figure 1.) The applications are built
on top of the Android application framework. The framework
provides the core implementation of an application including
event handling and processing, management of application
components and resources as well as facilitation of Inter
Process Communication (IPC) with other applications and
system services. The state of all applications on the device
is controlled by the system server. The system server contains
a set of shared services such as a window manager, package
manager as well as an activity manager controlling the state
of each application component running on the device. Android
applications are driven by input events from system services
and other applications. These events include User Interface
(UI) and system events sent to the appropriate application via
the system server.

The Android application environment presents three chal-
lenges to analysis tools: (1) Android applications are heavily
dependent on the Android application framework and system
services not runnable outside of the software stack, (2) since

1

Application Framework

Android Application

Application

System Server

Application Framework

System Services

Dalvik VM Native 
LibrariesDalvik VM Native 

Libraries

Binder IPC

Native 
Libraries

Native 
Libraries

System Services

Fig. 1. The Android environment

Android applications have an asynchronous design with many
entry points, analysis requires a driver to execute the appli-
cation and (3) it is difficult to reliably monitor the flow or
execution of applications for errors due to the asynchronous,
multi-threaded design of the applications as well as the usage
of reflection and native method calls. If the application is
executed on the software stack, validating the execution is even
more challenging since the software stack needs to be edited
and recompiled or instrumented for each version of Android.

The commonly used approaches to analyze Android appli-
cations are static and dynamic analyses. Static analysis usually
requires the system under test to be compilable (not runnable)
and as such does not require generation of test drivers.
However, static analysis still requires modeling native code
and implicit dependencies, as well as specifying properties
to check (e.g., memory leaks, null pointer exceptions, specific
usage patterns). The results are usually an over-approximation,
but for Android applications errors can be missed due to the
models required to run the tool on the applications. Static
analysis can also not provide users with a sequence of events
leading to a possible error for validation purposes.

In contrast, dynamic analysis requires the system under
test to be runnable and requires test driver generation. In
addition, unit testing requires generation of mock objects. This
type of testing uses test oracles and assertions to ensure the
component executes correctly. Dynamic analysis provides an
under-approximated analysis of the application and its main
challenge is generating input events that obtain satisfactory
coverage of the application code [3].

Model checking is a mature verification technique that could
be used to prove the absence of property violations in an
application if the state space is finite (and small enough).
However, most often it is used simply for bug finding, even if
the state space is infinite. The search space is reduced using
state matching and backtracking while dynamically executing
the application in a closed environment. Even with state



1

Android 
App

Input 
Script

Checklist

JPF-Android

Counter 
example

MonkeyRunner

Dynodroid

UI Automator

Re-run with 
dynamic input 

generation driver

JPF

No Violation

Violation

+

Fig. 2. Our approach

matching, model checking suffers from the state space explo-
sion problem and the actual environment is often abstracted
to reduce the state space. Since model checking requires fine-
grained control over the application’s execution, an adaptable
and customizable model of the environment is required.

For this research we focus on verifying Android appli-
cations using verification tools developed for general Java
applications. More specifically we extend JPF, a powerful
model checker and analysis engine to verify and analyze
Android applications. We use JPF since it is developed for Java
applications and it has many extensions that can be applied
to Android applications (such as Symbolic PathFinder). Since
Android applications are executed dynamically we face the
same challenges as some of the dynamic analysis tools. We
need to generate input events that obtain good coverage of
the application code. Additionally we require an extensive
environment model on which to run the application. JPF allows
us to provide a more controllable and adaptable environment
that can simplify the detection of hard-to-find and corner-
case errors that the currently available Android analysis tools
struggle detecting due to the application’s reliance on the
external environment of the application. JPF also provides us
with a property listener framework to monitor the execution
of an application at byte-code level. Furthermore, if a property
violation is reached, it can provide the user with a sequence
of input events to reach the violation.

The expected contribution of this research is to show
how model-checking Android applications in a controlled and
adaptable environment, using the fine-grained analysis capabil-
ities of JPF, can simplify the detection of errors that are hard-
to-find due to the complex design of Android applications.

II. OVERVIEW OF OUR APPROACH

As part of this research we develop a tool called JPF-
Android built on JPF. Our approach is shown in Figure 2.
The tool takes as input a script containing non-deterministic
sequences of input events to drive the application’s execution,
the Android application code compiled to Java byte-code and
Checklists used as property specifications to verify the applica-
tion’s execution. JPF-Android provides a model environment
on which to execute the application using the events from the
input script. It then tracks the execution of the application and
verifies it against property listeners including the Checklists
listener.

There are three possible outcomes of running the tool on an
application. The first outcome is that the tool finds a property

violation or error in the application. It immediately stops
execution and reports the error and the sequence of events that
leads to the violation/error to the user. Since the correctness
of the tool is based on the model environment, we need to
verify that the error exists in the actual environment. For this
reason we also provide a translator that can run the erroneous
event sequence on a device using dynamic testing tools such
as MonkeyRunner1 or Dynodroid [3]. The second outcome
is that the tool completes the search of the state space and
finds no property violations. In this case the user can choose
to perform a more exhaustive search of the application using
the dynamic input generation driver of the tool. We expect
to find that model-checking can achieve a high coverage of
the application code due to its exhaustive search driver which
executes all possible event sequences up to a certain length
combined with the state matching to reduce the search space.
In the third case, the state space is too large and JPF-Android
never stop running or runs out of memory. In this case we
can try to limit the state of the application by removing fields
from it that change so often that no state matching can take
place.

In the following sections we discuss how JPF-Android
solves the three main challenges to analyzing Android appli-
cations.

A. Environment modeling

The are two main reasons to model components in the
Android environment. The first reason is to model behavior
of unavailable or native code that can not be executed or
analyzed. Android applications are dependent on the Android
application framework and system server to run. Unfortunately
these libraries cannot execute directly on the Java virtual
machine as they require native libraries and drivers that are
not available. For this reason we need to model their native
behavior to allow Android applications to execute outside
of the software stack. The second reason for modeling the
behavior of components in the environment is to abstract or
simplify their implementation. Abstraction is very important
for model checking since it reduces the size of the exploding
state space.

In our previous work [4], [5] we created an Android envi-
ronment model manually to verify Android applications using
JPF. We found that the Android environment is very complex
and that components often have references and dependencies
on other parts of the system or native libraries without which
they would not be setup correctly or they might not run at
all. Creating models manually is a time-consuming task that
requires expert domain knowledge. For our current research
we improve our manual approach by identifying where we
can apply tools to replace or assist our manual effort.

We use different approaches to create models depending
on the functionality required from them. The most basic way
to model a class or component is to create empty stubs.
These stubs keep public methods and fields and return default

1developer.android.com/tools/help/monkeyrunner concepts.html



values if accessed or called, but they have no side-effects on
the application or environment. They are useful for modeling
classes that do not influence the verification of the application
for example the Logging class. This type of modeling works
well for abstraction and the models can easily be generated
automatically using static analysis tools such as OCSEGen [1]
and Modgen [6] geared towards environment generation.

To retain certain behavior of the component/class but to
reduce its complexity, we can also generate smarter stubs
using OCSEGen and Modgen. OCSEGen can generate stubs
retaining side effects (changes) to certain fields by making use
of side-effect analysis. Modgen is a code slicing tool focused
on optimization of library classes by stubbing out functionality
to reduce complexity. This type of modeling is useful for GUI
components where functionality related to the visual aspects
of the components is not important for verification purposes
and can be removed but functionality such as containment,
visibility and listener registration must be retained.

Sometimes we require more complex models of components
to verify the usage of the component or when the component
is crucial to the execution of the application. In this case
we need to study the specifications of the component or use
runtime monitoring to extract a model of the component’s
behavior. We can then write models manually to simulate the
behavior or use tools such as OCSEGen to generate models
given a set of specifications. This type of modeling is useful
for resources such as the MediaPlayer or Camera where we
need more extensive models that follow the specifications of
the component to ensure correct usage of the resource by the
application.

B. Driving the application execution

Android applications have an event driven design where
their execution is triggered by input events. Android ap-
plications respond to many different types of input events
including physical button presses, the rotation of the device,
the application being started from the launcher and the WiFi
connection dropping. These input events can be combined into
millions of unique event sequences of varying lengths. Each of
these sequences can potentially trigger erroneous application
behavior. Since it is impractical to execute all event sequences,
we need to generate input events that obtain maximum code
coverage given the minimum amount of input events.

JPF-Android supports driving the application in two ways.
Users can either script input sequences or they can perform
a more exhaustive search using JPF dynamic input generation
driver. The scripting environment allows developers to script
compact, non-deterministic sequences of input events. The
events are then fired one by one each time the application
is idle and waiting for input events. Although this approach
provides the tool with optimized input sequences, writing the
input scripts becomes a tedious process and scripts might miss
uncommon sequences leading to errors. For this reason we are
developing an input generation driver that can generate input
sequences automatically at runtime bound to a certain number
of events. We expect that JPF-Android will reduce the number

and length of the input sequences using state matching to stop
execution if a previous state that has already been explored
is reached again. For the data parameters of generated events
we plan on using symbolic execution on bounded and small
components of the application to identify interesting values
before model checking the application.

We have also developed a translator that can execute event
sequences returned by JPF-Android when a property violation
is reached on the actual device or emulator. This allows the
user to validate errors detected by JPF-Android.

C. Property specifications

In model checking, logical formula specifications are used
to verify the application’s execution. These specifications can
describe safety properties such as unchecked exceptions and
liveness properties including deadlock and race-conditions.
Property specifications can also be used to verify that the
implementation conforms to its design requirements.

JPF-Android simplifies specifying properties by providing
a Checklists property listener to track the execution of the
application at method level. Checklists can be used to verify
that certain methods are executed in a specific order. This
is useful as it provides an automatic way to verify that an
application executes as expected during each test run. Check-
lists can be written to verify a variety of properties including
liveness and safety properties. Checklists is just one type of
property specification that can be implemented using JPF’s
property listener’s functionality. Once Android applications
can execute on JPF, many other property listeners can be
created for example resource and memory leak detection as
well as incorrect usage of APIs. JPF-Android also supports
code coverage calculation using Java PathFinder’s built-in
coverage calculation listener. Code coverage will indicate how
thoroughly the code was checked for Checklists and other
property violations. For our future work we plan to create
Android specific listeners to identify common errors such as
these in Android applications to show the powerful analysis
that can be performed using JPF-Android.

D. Evaluation

To evaluate our approach we will run JPF-Android on a set
of open source Android applications with previously identified
errors. We can validate the existence of the errors found during
analysis using the translator to execute the sequences leading
to the error on the device. We will also compare results and
coverage statistics with other dynamic analysis tools such as
Dynodroid and Monkey.

III. PROGRESS

This research has lead to three papers published in the ACM
SIGSOFT Software Engineering Notes. The first paper entitled
“Verifying Android Applications on Java PathFinder” [4],
describes the design and implementation of JPF-Android. The
second paper, “Execution and Property Specifications for JPF-
Android” [5], discusses the syntax of JPF-Android’s input
script and how events are simulated on the application under



test and the addition of Checklists to monitor and verify the
execution of Android applications during runtime.

The main challenge to evaluating our approach it that it re-
quires modeling of the environment for the set of applications
and the writing of test scripts to drive the application’s execu-
tion. To allow the tool to be run on a larger set of applications,
we are automating some of this effort. To facilitate the creation
of the environment model, we investigated currently available
modeling techniques and how they can assist the user in our
paper entitled “Generation of library models for verification
of Android Applications” [2]. We are also currently extending
JPF-Android to generate input sequences automatically.

IV. RELATED WORK

Static analysis usually performs a shallow analysis of the
application and is geared towards detecting very specific
properties such as buffer overflow. Since static analysis is very
efficient at tracking data flow within an application, most of
the static analysis tools for Android applications are focused
on performing some kind of data flow analysis for example
privacy leaks [7]–[9].

Most dynamic analysis tools execute the application on
the actual emulator or device. Although the application can
execute soundly in this environment, it is not always possible
or simple to control the state of the environment required for
controlled testing. The emulator, for example does not have
WiFi capabilities and it is not possible to control the state
of the battery on the actual device without draining it to the
required amount. It provides an under approximated analysis
bound by the number of input events.

Android’s monkey tool is a dynamic stress testing tool that
takes a black-box approach to Android application testing. It
automatically generates pseudo-random input events and fires
the events while the application is running on the emulator /
device. The disadvantage of generating random input events
is that it may generate many unimportant event sequences
while not triggering important events. Dynodroid [3] makes
use of the same approach as Monkey, but instead of generating
the events randomly, it intelligently selects the events, careful
not to starve certain event types. Another tool shipped with
the Standard Development Kit (SDK) is MonkeyRunner. It
provides a python API for users to script input event sequences
that are simulated by the Android emulator/device.

Android application can also be tested using Android’s
JUnit testing framework. This framework allows the developer
to write unit and integration tests for Android applications.
Although we can create mocks and stubs to model external
functionality, more complicated application behavior requires
the application to execute as a whole and we need to be able
to track the execution of the application. Robolectric [10] is
also a JUnit testing framework for Android, but runs outside of
the emulator in the JVM. As the Android source code can not
compile on the JVM, Robolectric makes use of the JavaAssist
library to intercept class loading and return a shadow class
that model the functionality of the original class.

Other project have also applied verification techniques to
Android applications. Anand et al. [11] applied concolic
testing to traverse the application on the device and Mirzaei et
al. [12] applied symbolic execution to Android applications to
generate drivers for JUnit testing application components. For
both approaches the state space exploded quite quickly due to
the number of possible input events.

V. CONCLUSION

There are many approaches available to detect errors and
bugs in Android applications. Each approach has to deal with
the three main challenges of analyzing Android applications
to various degrees, e.g., static analysis may not require input
generation. The research presents a novel approach for verify-
ing Android applications by developing a model checking tool,
called JPF-Android. JPF-Android allows Android applications
to be verified outside the Android platform on Java PathFinder
(JPF). Android applications are executed on a model of the An-
droid software stack and their execution driven by simulating
user and system input events. This approach provides the tool
with full control over the Android system and analysis of the
execution of the application during runtime. The limitations
of using this approach is the upfront work required to create a
bounded environment model, whose correctness is imperative
to the correctness of the analysis.

ACKNOWLEDGMENT

I would like to thank my two advisors, Willem Visser and
Brink van der Merwe, as well as Oksana Tkachuk for their
advise and contributions to this research.

REFERENCES

[1] O. Tkachuk, “OCSEGen: Open components and systems environment
generator,” in Proc. 2nd Int. Work. State Art Java Progr. Anal., no. 1,

[2] H. van der Merwe, O. Tkachuk, B. van der Merwe, and W. Visser, “Gen-
eration of Library Models for Verification of Android Applications,” in
ACM SIGSOFT Softw. Eng. Notes,

[3] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: an input generation
system for Android apps,” Proc. 2013 9th Jt. Meet. Found. Softw. Eng.
- ESEC/FSE 2013, p. 224, Aug. 2013.

[4] H. van der Merwe, B. van der Merwe, and W. Visser, “Verifying
Android applications using Java PathFinder,” ACM SIGSOFT Softw.
Eng. Notes, vol. 37, no. 6, p. 1, Nov. 2012.

[5] ——, “Execution and property specifications for JPF-android,” in ACM
SIGSOFT Softw. Eng. Notes, vol. 39, no. 1,

[6] M. Ceccarello and O. Tkachuk, “Automated Generation of Model
Classes for Java PathFinder,” in ACM SIGSOFT Softw. Eng. Notes,

[7] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le
Traon, D. Octeau, and P. McDaniel, “FlowDroid,” ACM SIGPLAN
Not., vol. 49, pp. 259–269, 2014.

[8] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid : Automated
Security Certification of Android Applications.”

[9] W. Enck, L. P. Cox, P. Gilbert, and P. Mcdaniel, “TaintDroid : An
Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones.”

[10] B. Sadeh and S. Gopalakrishnan, “A Study on the Evaluation of Unit
Testing for Android Systems,” Int. J. New Comput. Archit. their Appl.,
vol. 4, no. 1, pp. 926–941, 2011.

[11] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proc. ACM SIGSOFT 20th Int. Symp.
Found. Softw. Eng. - FSE ’12, ser. FSE ’12.

[12] N. Mirzaei, S. Malek, C. S. Pasareanu, N. Esfahani, and R. Mahmood,
“Testing android apps through symbolic execution,” ACM SIGSOFT
Softw. Eng. Notes, vol. 37, no. 6, p. 1, Nov. 2012.


