
Execution and Property Specifications for JPF-Android

Heila van der Merwe, Brink van der Merwe and Willem Visser
Dept. of Computer Science

University of Stellenbosch, South Africa
{hvdmerwe, abvdm, wvisser}@cs.sun.ac.za

ABSTRACT
JPF-Android is a model checking tool for Android applica-
tions allowing them to be verified outside of an emulator on
Java PathFinder (JPF). The Android applications are exe-
cuted on a model of the Android software stack and their ex-
ecution driven by simulating user and system input events.
This paper follows from our previous work describing the
design decisions and implementation of JPF-Android. Here
we discuss the syntax and implementation of the scripting
environment which is used to drive the execution of the An-
droid application under analysis. It also focuses on a further
extension to the tool used to automatically monitor the run-
time behavior of Android applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

Keywords
Android application, Java PathFinder, Testing, Verification,
Model Checking, Runtime monitoring

1. INTRODUCTION
Android applications must be robust, consistent in their be-
havior and always retain their application state to provide
a good user experience. Currently, many verification and
testing techniques are being researched to develop a frame-
work assisting developers in creating robust and error free
Android applications.

The most common way of testing Android applications is
using one of the Android built-in testing tools1. These tools
execute tests on the emulator or device running Android.
Running tests on the emulator/device, however, is very slow.
This is due to the fact that the test cases have to be com-
piled, packaged into dex byte-code, uploaded and then run
on the the device. Finally, the results have to be sent back
and displayed to the user. The Android software stack is
also very restrictive in terms of the functionality it exposes
internally to its testing frameworks as well as externally to
software running outside of the emulator/device. Addition-
ally, the Android Operating System (OS) is not easily exten-
sible. To include testing code into the OS, a custom Android
ROM has to be compiled to extend existing OS capabilities.

Verifying Android applications yields two main challenges:

1
developer.android.com/tools/testing/testing_android.html

providing an adaptable and customizable environment that
models the Android software stack on which to run Android
applications, and providing an input model that can simu-
late input events to drive the application execution.

This paper follows from our previous paper “Verifying An-
droid Applications using Java PathFinder” [10], which de-
scribes the design and implementation of JPF-Android. JPF-
Android is a model checking tool for Android applications
allowing them to be verified outside of an emulator on Java
PathFinder (JPF). This paper discusses the syntax of JPF-
Android’s input script and how events are simulated on the
application under test. The focus of this paper, however, is
on an extension to the tool that can verify the execution of
Android applications during runtime. Lastly, it illustrates
how the tool’s runtime monitoring functionality can be used
by applying it to an example Android application.

2. JPF-ANDROID
Every application verified on JPF requires a *.jpf application
properties file. This file defines the target of the application
i.e. where JPF should start execution. For Java applications
the target is the class containing the main method starting
the application. Android applications do not have a main
method. They are initiated by the Android system invoking
callback methods, corresponding to specific lifecycle stages
on the application components. Each Android application
has a launcher or main Activity. This Activity serves as the
main entry point for the application. JPF-Android requires
the target to be set to this Activity. When this class is
loaded a main method is injected into this Activity by JPF-
Android. This main method starts up the entire Android
software stack model which in turn starts up the application.

This properties file also contains the name of the input script
file and the Checklist definition file for this project.

JPF-Android makes use of an input script containing inter-
esting and important event sequences to drive the applica-
tion under test. This script is parsed and its state managed
by the scripting environment. When the Android applica-
tion reaches a point in the execution where it is idle i.e. there
are no more messages in the message queue, the next event
is requested from the scripting environment. An example of
an input script is given in Figure 3.

The Checklist definition file contains user defined Check-
list definitions and method-to-Checkpoint mappings. These

#— dependencies on other JPF projects

@using = jpf-android

#— target setup

target = za.android.vdm.rssreader.TimelineActivity

classpath+=$jpf-android/../Examples/RSSReader/bin/classes/

#— android setup

android.script=$config path/InputRSSReader.es

android.checklist = $config path/CheckRSSReader.cl

android.active checklists = updateInitiated, getFeedUpdates,

updateWifiDown, updateBatteryLow, updateRunning

Figure 1: Examples of a *.jpf properties file

Checklist definitions are discussed in Section 3.3. They are
used to automatically verify that the Android application
executes in the expected and correct way. An example
Checklist definition file is given in Figure 4. The *.jpf prop-
erties file also allows the user to set the active Checklists for
this run.

3. THE SCRIPTING ENVIRONMENT
Similarly to how JPF verifies all thread scheduling choices,
the scripting environment makes use of JPF’s ChoiceGen-
erator mechanism to schedule the non-deterministic script
choices of an ANY script element. This allows the script to
contain non-deterministic sequences of input events. When
an ANY element is reached in the script, the state of the
script is saved and an AlternativeChoiceGenerator schedules
each choice non-deterministically for execution.

The input script is grouped into sections each specifying the
input events for a specific Window. User events in the script
are assumed to be directed to the Window of the current
section.

Android applications react to two types of input events: user
events and system events.

3.1 User events
User or User Interface (UI) events are triggered by a user
interacting with UI elements on the screen or with the phys-
ical buttons on the device. This section describes how UI
events are scripted and how these events are simulated by
JPF-Android.

In Android, all interactive UI elements such as Buttons and
TextBoxes are represented by View objects. View objects
store the unique id of the element, its state (enabled / visible
/ focused), its properties (coordinates / size / background /
theme) and all of its registered event listeners. Some View
objects, such as a LinearLayout and RadioGroup, are capa-
ble of containing other View objects. They are called View-
Group objects. View and ViewGroup objects are stored in
a View hierarchy corresponding to a tree structure. The
leaves of the tree are View objects and the inner nodes are
ViewGroup objects. This View hierarchy is stored inside
of a Window object. Each Activity component of the ap-
plication is associated with a single Window. The Window
provides functionality to interact with its View hierarchy. In
the Android OS, each Window is assigned a Surface object
on which to draw its graphical representation.

JPF-Android closely models the Android UI functionality
to ensure that it reacts in the same way as the OS. JPF-
Android does this by tracking the state of each View ob-
ject to avoid triggering actions on disabled or invisible ob-
jects from the script. Common View objects such as Check-
Boxes, TextBoxes and ListBoxes each store their own unique
attributes and listeners. The CheckBox, for example, has
a checked attribute and an OnCheckedChangeListener and
the ListBox has an adapter to store the list of values to dis-
play. The TextBox stores a String value representing the
text inside of the box. As Android contains many View
components, each with many attributes, these models are
continually upgraded and extended. The View hierarchy is
stored to support cascading attributes such as visibility.

The script allows the user to simulate UI events, with spe-
cific parameters, on View Objects. UI events consists of
three parts:

UIEvent = "$", target, ".", action, "(", params, ")"

target the name of a specific widget at which this action is
targeted for example a button, checkbox, textbox.

action the action to perform on the target for example click,
enter text, select item in a list.

params optional, comma separated list of parameters.

$buttonOK.onClick(), for example, describes a click ac-
tion on the button buttonOK and $list.selectItem(5) de-
scribes selecting the fifth item in list.

This approach requires each View object to be associated
with a unique name in its Window. Typically the View’s
name/ID attribute is used. Views dynamically created from
the code do not have a name attribute. These Views are
referenced from the script by using a name inferred from
the state of the View object. A button for example may
use its label text. Physical buttons on the device are not
represented by View objects in the hierarchy. To interact
with them from the script, the target is set to “device”. The
device contains reserved actions for simulating interaction
with the device. device.rotate("landscape") rotates the
device to landscape mode and device.pressBackButton()

simulates pressing the back button on the device.

UI events triggered from the input script are passed to the
JPF-Android WindowManager. The WindowManager keeps
a reference to the currently visible Window. The View hi-
erarchy of the current Window is then traversed to locate
the actual View object. If the View has a registered listener
corresponding to the action, this listener is directly triggered
on the main thread.

3.2 System Events
Android applications are also driven by system events. Sys-
tem events are fired by the Android system in response to a
change in the system state or by other applications interact-
ing with this application. They include notifications such as
the state of the WiFi connection changing when the WiFi
signal drops.

Although some system events can be triggered manually

device.setWifi("OFF");

device.setBattery("LOW");

device.sendSMS("084 123 1234", "Test");

device.setGPS("-33.928806","18.415106");

Figure 2: Examples of changing the system state

or by using the Android Debug Bridge (ADB) tool, JPF-
Android aims to trigger all types of system events program-
matically. This functionality is very important as certain
application behavior can only be triggered by system events.
We also need to consider that if the system broadcasts a spe-
cific state change, the application can query the system for
its state. When the system sends a network change event,
for example, it is customary for the application to query the
current status of the network to make sure it has the newest
version of the network state. For the tools running on the
emulator this is inherently true. For JPF-Android, how-
ever, this results in not allowing events to be sent from the
script directly to the application. These events have to be
intercepted and forwarded to the relevant service manager
to make sure its state also reflects the change.

JPF-Android allows the user to change the state of the sys-
tem to induce system events. Examples of these state change
events are given in Figure 2.

3.3 Runtime verification
Runtime verification validates the correctness of an appli-
cation by monitoring the execution of the application and
comparing it to user defined property specifications. These
property specifications can be described using a combination
of temporal logic, monitoring operations and regular expres-
sions. Techniques, such as logic based monitoring and error
patterns analysis, are then used to verify the application’s
execution against these specifications [2, 6, 3].

Application monitoring can either be done inline or offline [4].
Inline monitoring requires modifying the application’s code
to contain annotations/comments describing the property
specifications of the program. During a pre-compilation
stage, these comments/annotations are used to dynamically
generate code verifying these properties. Offline monitor-
ing entails instrumenting the byte-code of the application to
emit events indicating changes in the program state. These
event traces can then be processed by another system, inde-
pendent of the application, to detect errors.

JPF-Android makes use of an offline runtime monitoring ap-
proach. It employs a JPF Listener to be notified of method
invocations. JPF-Android allows methods to be registered
as“Checkpoints” in the application code by annotating them
with Checkpoint annotations, or by mapping them to Check-
points in the Checklist definition file. When a Checkpoint
method is invoked, JPF-Android perceives this as reaching
a specific state in the application code.

JPF-Android allows the user to define a list of Checkpoints,
called a Checklist, to verify the flow of the application’s exe-
cution during runtime. These Checklist’s Checkpoints (cor-
responding to method invocations) are then matched against
the application stack-trace to verify the order in which meth-
ods are invoked.

Android applications have a single-threaded, asynchronous
design. All input events are placed in a message queue,
waiting to be handled by the one main thread of the ap-
plication. However, many applications employ additional
threads to perform long running or blocking operations as
these operations can cause the main thread to block, lead-
ing to a unresponsive graphical user interface (GUI). Due
to the GUI of Android applications not being thread safe,
these additional threads can only interact with the GUI by
posting requests in the main thread’s message queue [10].
This makes monitoring Android applications, in terms of
method invocations, challenging since methods are invoked
on specific threads and multiple threads can be scheduled in
different ways.

A Checklist can be defined using the following syntax:

name ":" guard "=>" checkpoints ";"

A Checklist contains a guard to identify the point in the ex-
ecution where JPF-Android must start matching its Check-
points. This is necessary as concurrent applications have
multiple threads of execution. These threads can each be
verified alone or concurrently. The guard of a Checklist
consists of a list of method invocations that have to be
reached before the Checklist is marked as active. If the guard
is matched in the main thread of execution, the Checklist
is checked concurrently for all threads spawning after this
point. If the guard is only matched in one of the concurrent
threads, only this thread’s execution will be verified.

The state of an Android application running on JPF-Android
can be changed non-deterministically from the input script
using an ANY script element. As a result, an input event
can cause different executions of the application for these
different application states. The guard also allows the user
to specify the specific state of the system for which a Check-
list must be verified.

Android applications have a very strong event driven design
in which the application execution is prompted by user and
system events. To make Checklists more intuitive to this de-
sign, a Checklist can only verify the execution prompted by
a single input event. Although a Checklist can only verify
the execution of an input event, they are defined “Globally”
to the entire application execution. In other words, Check-
lists are fired each time the first Checkpoint in the guard is
reached. But, JPF-Android is only interested in Checklists
that have matched their guard and have not been completed
or have not yet violated a negative Checkpoint.

A Checklist specifies that its Checkpoints have to be reached
in a specific order. It is not, however, concerned with which
methods are called in between these Checkpoints or whether
Checkpoints are reached directly after each other. It sim-
ply verifies that when the application is in a specific state
and receivers a specific event, that the application follows
this specific flow of execution. Checklists also supports neg-
ative Checkpoints, which indicate that a Checkpoint may
not be reached before the next non-negative checkpoint in
the Checklist is reached. A negative Checkpoint is repre-
sented by placing a “!” symbol in front of the Checkpoint

Checklists are designed to be succinct logical execution spec-

1. SECTION default {
2. @urlInputStreamIntent.putString(”url”,”http://feed.rss”)
3. @urlInputStreamIntent.putString(”file”,”src/input.rss”)
4. sendBroadcast(@urlInputStreamIntent)
5. @startIntent.setComponent(”TimelineActivity”)
6. startActivity(@startIntent)
7. }
8. SECTION TimelineActivity {
9. ANY{
10. GROUP{
11. device.setWifi(“ON”)
12. device.setBattery(“100%”)
13. },
14. GROUP {
15. device.setWifi(“OFF”)
16. device.setBattery(“100%”)
17. },
18. GROUP {
19. device.setWifi(“ON”)
20. device.setBattery(“LOW”)
21. }
22. }
23. $buttonUpdate.click()
24. }

Figure 3: Input Script

updateInitiated: update, checkRunning, !alreadyRunning,
checkWifi, !WifiDown, checkBattery, !batteryLow
=> runUpdate;

getFeedUpdates : parseFeed
=> storeInDB, loadFromDB, updateListView;

updateWifiDown: update, checkWifi, WifiDown
=> !runUpdate, cancelUpdate, notifyWifiDown;

updateBatteryLow: update, checkBattery , batteryLow
=> !runUpdate, cancelUpdate, notifyBatteryLow;

updateRunning: update, checkRunning , alreadyRunning
=> !runUpdate, cancelUpdate, notifyAlreadyRunning;

Figure 4: Checklist Definitions

ifications. Their aim is not to detect safety and liveness
properties, but to automatically verify the application exe-
cution during runtime.

4. EVALUATION
The evaluation section looks at how JPF-Android can be
used to verify properties of a RSSFeedReader application.
The application downloads and stores RSS feed items in a
database. The most current items are then displayed in a
list combining items of all the RSS feeds, ordered by creation
time. When an item in the list is selected, a web page is
shown containing the item’s content.

This example illustrates how JPF-Android is capable of mod-
eling a network connection, XML parser, a database connec-
tion and also three of Android’s main components namely
an Activity, Service and Broadcast Receiver.

JPF-Android aims to provide the user with as much freedom
as possible to configure external input to the application.
This input can be non-deterministically changed by using
an ANY script element. The network connection is modeled
by allowing the user to associate a URL with a filename

containing the data sent over the network from within the
input script. In Figure 3, line 2-4 a specific predefined In-
tent object, called a urlInputStreamIntent, is constructed
and sent to the system from the script. When a network
connection is made to this URL, JPF-Android returns the
specified file’s contents. This input stream is then sent to
the XML parser to be parsed.

When the user clicks on the update button in the Time-
lineActivity, the application must retrieve the newest items
from each registered feed and update the list to reflect these
changes. For simplicity’s sake we only allow updates over an
active WiFi connection. If the user clicks the refresh button,
and the WiFi is not connected or the battery is too low or a
update is already running, the application must not attempt
to update the feeds but notify the user. To verify that the
application correctly handles each of these situations, we use
the input script in Figure 3 to simulate each of these situa-
tions non-deterministically and then register the Checklists
in Figure 4 to verify this behavior.

Checklist can be violated in two ways after the guard has
been matched: firstly, when a negative Checkpoint in the
Checklist is reached or when all Checkpoints in a Check-
list have not been reached in order, before the search has
ended. Checklists are matched during runtime and violating
Checklists are reported at the end of execution. To illustrate
how Checklists are reported, we have introduced two viola-
tions into the RSSFeedReader application. Figures 5 and
6 displays these violations as reported by JPF-Android. In
Figure 5 the “getFeedUpdates” Checklist failed due to the
“storeInDB” Checkpoint not being reached. In Figure 6 the
application tried to update although the WiFi was off, which
violated the “!runUpdate” Checkpoint in the “updateWifiD-
own” Checklist.

5. RELATED WORK
The main challenge of testing Android applications is gen-
erating and simulating input events. This section looks at
how other projects approached these challenges.

UI Automator2 allows the user to script any manual action
the user would normally be able to perform on the device
and then execute these events, one by one, on the emula-
tor/device. But, some system events like battery low noti-
fications, triggering an alarm or testing the behavior of the
application using specific input parameters are not as easily
triggered using this approach.

Android’s monkey tool is a stress testing tool that takes a
black-box approach to Android application testing3. It au-
tomatically generates pseudo-random input events and fires
the events while the application is running on the emulator
/ device. Input events can be generated quite quickly as
they are randomly selected, but it can also generate many
unimportant event sequences and repeat unimportant events
while not triggering important events. MonkeyRunner4 pro-
vides a python API for users to script input event sequences
that are simulated by the Android emulator. Dynodroid

2
developer.android.com/tools/help/uiautomator

3
developer.android.com/tools/help/monkey.html

4
developer.android.com/tools/help/monkeyrunner_concepts.html

==================================== violations
Checklist Name: getFeedUpdates
EventID: 8
Reason: Checkpoint storeInDB not visited before

the search ended.
Script Events:
1. @urlInputStreamIntent.putExtraString("url"...
2. @urlInputStreamIntent.putExtraString("file"...
3. sendBroadcast(@urlInputStreamIntent)
4. @startIntent.setComponent("TimelineActivity")
5. startActivity(@startIntent)
6. device.setWifi(‘‘ON’’)
7. device.setBattery(‘‘100%’’)
8. $buttonUpdate.click()
==================================== results

Figure 5: Violation 1

==================================== violations
Checklist Name: updateWifiDown
EventID: 8
Reason: Failed because checkpoint reached runUpdate

did not match checkpoint !runUpdate.
Script Events:
1. @urlInputStreamIntent.putExtraString("url",...
2. @urlInputStreamIntent.putExtraString("file",...
3. sendBroadcast(@urlInputStreamIntent)
4. @startIntent.setComponent("TimelineActivity")
5. startActivity(@startIntent)
6. device.setWifi(‘‘OFF’’)
7. device.setBattery(‘‘100%’’)
8. $buttonUpdate.click()
===================================== results

Figure 6: Violation 2

makes use of the same approach as MonkeyRunner where it
sends input events to the OS using the ADB daemon run-
ning on the device to fire UI and system events [7]. Its main
approach it not to let the user script these input events,
but, automatically choosing them. Before choosing an event
it firstly observes all events that influences the state of the
application. It then intelligently selects one of the events,
careful not to starve certain event types and executes the
event on the device.

Another way to test Android application execution is us-
ing Android’s JUnit testing framework for Android5. This
framework allows the developer to write unit and integration
tests for Android applications. It supports Android com-
ponent testing and supports testing the interaction between
Activities and Services. The disadvantage of this framework
is that the state of the emulator can not be changed while
the tests are run. This means that we can not programmat-
ically send system events to change the battery state or the
WiFi radio’s state of the device. Robotium is a project that
extends the Android JUnit framework and improves its syn-
tax6, but it still includes the same limitations as the JUnit
framework. Model-based testing approaches extract models
of the behavior of a system and then utilize these models
to generate correct and meaningful JUnit test cases and in-
put values to test the system. Various projects [11, 1] have
developed solutions to extract a model from an Android ap-
plication and use this model to generate test cases that can
run on the emulator.

Robolectric is also a JUnit testing framework for Android,
but runs outside of the emulator in the JVM. As the An-
droid source code can not compile on the JVM, Robolectric
makes use of the JavaAssist library to intercept class load-
ing and return a shadow class that support the same type
of functionality as the original class [9].

Other projects focus on applying symbolic verification tech-
niques such as concolic testing [5] or symbolic execution [8]
to automatically generate valid inputs while traversing the
application.

6. CONCLUSION
In the paper we presented an approach to verify Android ap-
plications on the Java Pathfinder JVM. Many of the other
available testing frameworks for Android verify applications
on an emulator/device which has limited resources and lim-
ited exposed functionality. JPF-Android verifies all execu-

5
developer.android.com/tools/testing

6
code.google.com/p/robotium

tion paths of an Android application using non-determinism
to explore all possible thread interleavings and many differ-
ent input event sequences. The paper also presents a run-
time verification framework to automatically verify that the
Android application executes in the expected and correct
way.

The largest limitation of JPF-Android is the size and com-
plexity of the input script. As JPF-Android uses model-
checking to verify application properties, it suffers from the
state explosion problem. This limits the length and com-
plexity of the input script.

Our future work includes extending Checklists to support
choices (OR operator) and running a large example applica-
tion on the system to analyze the size of the state space the
tool generates.

7. REFERENCES
[1] D. Amalfitano, A. R. Fasolino, and P. Tramontana. A GUI

Crawling-Based Technique for Android Mobile Application
Testing. In 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops,
pages 252–261. IEEE, Mar. 2011.

[2] F. Chen and G. Roşu. Towards Monitoring-Oriented
Programming. Electronic Notes in Theoretical Computer
Science, 89(2):108–127, Oct. 2003.

[3] K. Havelund and G. Roşu. Monitoring Java Programs with
Java PathExplorer. Electronic Notes in Theoretical Computer
Science, 55(2):200–217, Oct. 2001.

[4] K. Havelund and G. Roşu. Efficient monitoring of safety
properties. International Journal on Software Tools for
Technology Transfer, 6(2):158–173, Nov. 2003.

[5] C. S. Jensen, M. R. Prasad, and A. Møller. Automated Testing
with Targeted Event Sequence Generation. In Proc. 22nd
International Symposium on Software Testing and Analysis
(ISSTA), Lugano, Switzerland, July 2013.

[6] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan.
Java-MaC: a Run-time Assurance Tool for Java Programs.
Electronic Notes in Theoretical Computer Science,
55(2):218–235, Oct. 2001.

[7] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An Input
Generation System for Android Apps. ACM SIGSOFT
Software Engineering Notes, Aug. 2013.

[8] N. Mirzaei, S. Malek, C. S. Pasareanu, N. Esfahani, and
R. Mahmood. Testing android apps through symbolic
execution. ACM SIGSOFT Software Engineering Notes,
37(6):1, Nov. 2012.

[9] B. Sadeh and S. Gopalakrishnan. A Study on the Evaluation of
Unit Testing for Android Systems. International Journal of
New Computer Architectures and their Applications
(IJNCAA), 4(1):926–941, 2011.

[10] H. van der Merwe, B. van der Merwe, and W. Visser. Verifying
Android applications using Java PathFinder. ACM SIGSOFT
Software Engineering Notes, 37(6):1, Nov. 2012.

[11] W. Yang, M. R. Prasad, and T. Xie. A Grey-Box Approach for
Automated GUI-Model Generation of Mobile Applications. In
Fundamental Approaches to Software Engineering, volume
7793 of Lecture Notes in Computer Science, pages 250–265.
Springer Berlin Heidelberg, 2013.

